Synthesis of Phthalideisoquinoline and Protoberberine Alkaloids and Indolo[2,1-a]isoquinolines in a Divergent Route Involving **Palladium(0)-Catalyzed Carbonylation**¹

Kazuhiko Orito,* Mamoru Miyazawa, Ryo Kanbayashi, Masao Tokuda, and Hiroshi Suginome

Laboratory of Organic Synthesis, Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Received December 16, 1998

6,7,3',4'-Alkoxy-substituted 1-(2'-bromobenzoyl)-3,4-dihydroisoquinoline methiodides 17 were treated with sodium borohydride in methanol or acetic acid to give *erythro*-1-(2'-bromo-α-hydroxybenzyl)-2-methyl-1,2,3,4-tetrahydroisoquinolines 19. Treatment of 17 with lithium aluminum hydride in tetrahydrofuran gave the *threo*-isomer **20** in preference to the *erythro* **19**. On the basis of studies on palladium(0)-catalyzed carbonylation of 2-bromo-3,4-dimethoxybenzyl alcohol to 6,7-dimethoxyphthalide, amino alcohol 19 or 20 was treated with a catalytic amount of palladium(II) acetate and triphenylphosphine in an atmosphere of carbon monoxide in the presence of chlorotrimethylsilane and potassium carbonate in boiling toluene to give the corresponding erythro- or threo-types of phthalideisoquinoline alkaloids 1 or \hat{z} , respectively. One-pot cyclization of the *erythro*-amino alcohols **19** was achieved by heating in *N*,*N*-dimethylformamide containing potassium carbonate to give 2,3,8,9- or 2,3,9,10-alkoxy-substituted 5,6-dihydroindolo[2,1-a]isoquinolines 3, which have a unique tetracyclic skeleton characteristic of dibenzopyrrocoline alkaloids. Similarly, palladium-(0)-catalyzed carbonylation of 1-(2'-bromobenzyl)tetrahydroisoquinolines 21 in the presence of excess potassium carbonate was found to give 8-oxoberbines 22, which on reduction with lithium aluminum hydride can be converted to protoberberine alkaloids 4.

Introduction

Palladium-catalyzed carbonylation leading to the formation of benzolactams and benzolactones has recently been studied extensively.² These techniques have been applied to the preparation of heterocyclic compounds and some biologically active alkaloids.^{3,4} We have also been interested in aromatic metalations, especially followed by carboxylation and carbonylation, to use them as synthetic tools for the construction of heterocyclic compounds. We have reported a method for the preparation of alkoxy-substituted benzolactones via halogen-lithium

exchange followed by treatment of the resulting lithium salts with CO_2 gas.⁵ In this paper, we report a new method involving palladium(0)-catalyzed carbonylation for the preparation of 5,6-dialkoxy-substituted phthalides from 3,4-dialkoxy-substituted 2-bromobenzyl alcohols and its application to the synthesis of phthalideisoquinoline alkaloids.6

Phthalideisoquinoline alkaloids are known to possess a variety of physiological activities, including the interesting roles of noscapine as a nonnarcotic cough cure and (+)-bicuculline 1d as an effective antagonist of an inhibitory neurotransmitter, γ -aminobutyric acid (GABA).⁷ The alkaloids comprise a 6,7- or 6,7,8-alkoxy-substituted 1,2,3,4-tetrahydroisoquinoline and a 6',7'-alkoxy-substituted phthalide ring; these two units are linked together at their C-1 and C-3' carbons to form either erythro- or threo-isomers in Berberidaceae, Fumariaceae, Papaveraceae, and Ranunculaceae plants.8

Among many approaches,^{7,9,10} some methods for the selective synthesis of the erythro-form of these alkaloids, such as (\pm) - β -hydrastine $(\mathbf{1c})$, ^{10c,11} (+)- and (-)-bicuculline (1d), (+)- and (–)-corytensine, 10g,h or (+)-corlumine, 10d,h have been reported. In contrast, the methods devised for synthesis of the threo-alkaloids have been based only on the inversion of the *erythro*-form.¹² We previously ob-

⁽¹⁾ This paper is subtitled "Benzolactams III".

⁽²⁾ For general reviews on carbonylation, see (a) Heck, R. F. Palladium Reagents in Organic Syntheses; Academic Press: Orlando, 1985; pp 341-400. (b) Colquhoun, H. M.; Thompson, D. J.; Twigg, M. V. In Carbonylation, Direct Synthesis of Carbonyl Compounds, Plenum Press: New York, 1991. (c) Tsuji, J. In Palladium Reagents and Catalysts, Innovation in Organic Synthesis; John Wiley & Sons: New York, 1995.

⁽³⁾ For preparation of benzolactams, see: (a) Mori, M.; Chiba, K.; Ban, Y. *J. Org. Chem.* **1978**, *43*, 1684–1687. (b) Ishikura, M.; Mori, M.; Terashima, M.; Ban, Y. *Chem. Commun.* **1982**, 741–742. (c) Mori, M.; Ishikura, M.; Ikeda, T.; Ban, Y. Heterocycles 1981, 16, 1491-1494. (d) Ishikura, M.; Mori, M.; Ikeda, T.; Terashima, M.; Ban, Y. J. Org. Chem. 1982, 47, 2456-2461. (e) Mori, M.; Ishikura, M.; Ikeda, T.; Ban, Y. Heterocycles 1984, 22, 253-256. (f) Mori, M.; Purvaneckas, G.-E.; Ishikura, M.; Ban, Y. *Chem. Pharm. Bull.* **1984**, *32*, 3840–3847. (g) Mori, M.; Uozumi, Y.; Kimura, M.; Ban, Y. *Tetrahedron* **1986**, *42*, 3793-3806. (h) Y. Uozumi, Y.; Kawasaki, N.; Mori, E.; Shibasaki, M. J. Am. Chem. Soc. **1989**, 111, 3725-3727. (i) Pandey, G. D.; Tiwari, K. P. Synth. Commun. 1979, 9, 895–900. (i) Pandey, G. D.; Tiwari, K.
 P. Tetrahedron 1981, 37, 1213–1214. (k) Cacchi, S.; Fabrizi, G.; Malinelli, F. Synlett 1996, 997–998. (l) Cho, C. S.; Lee, J. W.; Lee, D. U.: Shim, S. C.: Khim, T. J. Chem. Commun. 1996, 2115-2116.

⁽⁴⁾ For preparation of benzolactones, see (a) Mori, M.; Chiba, K.; Inotsume, N.; Ban, Y. *Heterocycles* **1979**, *12*, 921–924, and ref 3h. (b) Coowel, A.; Stille, J. K. *J. Am. Chem. Soc.* **1980**, *102*, 4193–4198. (c) Martin, L. D.; Stille, J. K.; *J. Org. Chem.* **1982**, *47*, 3630–3633. (c) Larock, R. C.; Fellow, C. A. *J. Am. Chem. Soc.* **1982**, *104*, 1900–1907. (d) Crisp, G. T.; Meyer, A. G. *J. Org. Chem.* **1992**, *57*, 6972–6975.

⁽⁵⁾ Orito, K.; Miyazawa, M.; Suginome, H. Tetrahedron 1995, 51, 2489-2496.

⁽⁶⁾ For a preliminary report, see Orito, K.; Miyazawa, M.; Suginome, H. *Synlett* **1994**, 245–246.

⁽⁷⁾ For a review, see MacLean, D. B. In *The Alkaloids*, Brossi, A., Ed.; Academic Press: Orlando, 1985; Vol. 24; pp 253–286.
(8) For a review, see Blasko, G.; Gula, D. J.; Shamma, M. *J. Nat.*

Products 1982, 45, 105-122

^{(9) (}a) Kametani, T. In The Total Synthesis of Natural Products; ApSimon, J., Ed.; John Wiley and Sons: New York, 1977; Vol. 3, pp 1–272. (b) Rozwadowska, M. D. *Heterocycles* **1994**, *39*, 903–931.

tained an initial idea for the selective formation of each isomer from a common precursor¹³ and have also studied some procedures for aromatic carboxylation and carbonylation starting with aromatic metalations.^{5,6} In this paper, we deal with the selective hydride reductions of 1-(2'-bromobenzoyl)-3,4-dihydroisoquinoline methiodides **17** and the palladium(0)-catalyzed carbonylation of the resultant *erythro-* or *threo-*amino alcohols **19** or **20** in a new route to the synthesis of phthalideisoquinoline alkaloids. We also describe a similar carbonylation for the preparation of 8-oxoberbines, synthetic precursors of protoberberine alkaloids **4**, and one-pot conversion of *erythro-*amino alcohols **19** to an indolo[2,1-*a*]isoquinoline skeleton **3**, characteristic of dibenzopyrrocoline alkaloids.

Results and Discussion

Palladium(0)-Catalyzed Carbonylation of *o***·Bro-mobenzyl Alcohols.** Carbonylative cyclization of 2-bromobenzyl alcohol **5a** to the corresponding phthalides **6a** was examined using Pd(OAc)₂ and Ph₃P for in situ generation of the Pd(0) catalyst,¹⁴ on the basis of the Pd-(0)-catalyzed carbonylation of *ortho*-bromobenzyl alcohols reported previously by Mori and Ban.^{4a} Treatment with Pd(OAc)₂–PPh₃/CO gas in the presence of a powdered alkali, Na₂CO₃, K₂CO₃, K₂HPO₄, or K₃PO₄, using dry boiling toluene as a solvent caused the consumption of bromobenzyl alcohol **5a** (Scheme 1, Table 1). K₃PO₄ gave aldehyde **7a** in a higher yield than that of the desired phthalide **6a**, together with debromobenzyl alcohol **8a** (entry 4). K₂CO₃ may be a better base than K₃PO₄ for

 Table 1. Pd(0)-Catalyzed Carbonylation of

 2-Bromo-3,4-dimethoxybenzyl Alcohol 5a^a

products (%)		
6a	7a	8a
0	0	0
7	14	8
6	19	9
4	30	20
27	15	25
13	27	11
0	59	20
21	35	9
40	21	9
13	66	4
23	75	2
5	0	4
2	0	3
6	0	0
	oduce 6a 0 7 6 4 27 13 0 21 40 13 23 5 2 6	oducts (% 6a 7a 0 0 7 14 6 19 4 30 27 15 13 27 0 59 21 35 40 21 13 66 23 75 5 0 2 0 6 0

^{*a*} Reactions were carried out by heating a mixture of **5a** (25 mg, 0.1 mmol), $Pd(OAc)_2$ (4.4 mg, 0.02 mmol), PPh_3 (10.6 mg, 0.04 mmol), and the appropriate additives in boiling solvent (2 mL) in an atmosphere of CO gas. ^{*b*} Arabic numerals in front of the bases and TMSCl show their molar ratios to the substrate **5a**.

the present carbonylation–lactonization, as it gave the desired benzolactone **6a** in a relatively high yield (entries 5 and 8). Use of a large excess of these bases (20 mol equiv) clearly accelerated the consumption rate of **5a**, but gave the undesired benzaldehyde **7a** in a higher yield than that of **6a**, as shown in entries 6–8. Tertiary amines, such as Et₃N, *i*-Pr₂EtN, and Bu₃N, appeared to be less effective (entries 12–14).¹⁵ Lack of selectivity in these reactions has been observed in those of the analogous bromides reported by the aforementioned pioneers.^{4a,16}

It has been reported that TMSCl accelerates the copper-catalyzed conjugate addition of Grignard reagents¹⁷ and more recently some reactions involving other metal reagents, such as Zn,¹⁸ Mg,¹⁹ Mn,²⁰ [RhCl(C_2H_4)₂]₂,²¹ (CH₃)₂GaCl,²² NaH,²³ and LiH.²⁴ Assuming that TMSCl may have a similar effect on the present reaction, it was added into the system. In entry 9, a significant acceleration effect of carbonylation was observed by the addition of TMSCl. The dual addition of TMSCl and excess of K₂-

⁽¹⁰⁾ For selected articles published on and after 1985: (a) Narasimhan, N. S.; Joshi, R. R.; Kusurkar, R. S. J. Chem. Soc., Chem. Commun. 1985, 177–178. (b) Seebach, D.; Huber, I. M. P. Chimia 1985, 39, 233–234. (c) Seebach, D.; Huber, I. M. P.; Syfrig, M. A. Helv. Chim. Acta 1987, 70, 1357–1377. (d) Huber, T. M. P.; Seebach, D. Helv. Chim. Acta 1987, 70, 1944–1954. (e) Rein, K. S.; Gawley, R. E. Tetrahedron Lett. 1990, 31, 3711–3714. (f) Kessar, S. V.; Singh, P.; Vohra, R.; Kaur, N. P.; Singh, K. N. J. Chem. Soc., Chem. Commun. 1991, 568–570. (g) Rein, K. S.; Gawley, R. E. J. Org. Chem. 1991, 56, 1564–1573. (h) Gawley, R. E.; Zhang, P. J. Org. Chem. 1996, 61, 8103–8112.

^{(11) (}a) Moniot, J. L.; Shamma, M. J. Am. Chem. Soc. 1976, 98, 6714–6715; J. Org. Chem. 1979, 44, 4337–4342. (b) Moniot, J. L.; Abd el Rahman, A. H.; Shamma, M. Tetrahedron Lett. 1977, 3787–3790.
(c) Shamma, M.; Hindenlang, D. M.; Wu, T.-T.; Moniot, J. L. Tetrahedron Lett. 1977, 49, 4285–4288.

^{(12) (}a) Marshall, M. A.; Pyman, F. L.; Robinson, R. J. Chem. Soc.
1934, 1315–1320. (b) Gaál, G.; Kerekes, P.; Bognár, R. J. Prakt. Chem.
1971, 315, 935–939. (c) Gaál, G.; Kerekes, P.; Gorecki, P.; Bognár, R. Magy. Kém. Foly.
1971, 77, 286–289; Chem. Abstr. 1971, 75, 98702b. (d) Gaál, G.; Kerekes, P.; Bognár, R. Magy. Kém. Foly.
1972, 76, 25451e. (e) Teitel, S.; O'Brien, J.; Brossi, A. J. Org. Chem.
1972, 37, 1879–1881.

⁽¹³⁾ Orito, K.; Suginome, H.; De Silva, S. O.; Rodrigo, R. *Heterocycles* 1987, 26, 3077–3080.

^{(14) (}a) Amatore, C.; Jutand, A.; M'Barki, M. A. Organometallics 1992, 11, 3009–3013. (b) Amatore, C.; Carré, E.; Jutand, A.; M'Barki, M. A. Organometallics 1995, 14, 1818–1826.

⁽¹⁵⁾ DBU, pyridine, 4-(dimethylamino)pyridine, and 2,2,6,6-tetramethylpiperidine were also ineffective.

⁽¹⁶⁾ Other palladium catalysts were also examined. Under the typical reaction conditions for carbonylation of *o*-iodobenzyl alcohols [PdCl₂(PPh₃)₂, Et₃N, 1 atm of CO gas at 50–60 °C in DMF] reported by Stille,^{4b,c} **5a** was unreactive. Treatments with PdCl₂(PPh₃)₂ or Pd-(PPh₃)₄ using K₂CO₃ as a base in boiling toluene consumed **5a** slowly. The main product was aldehyde **7a**, accompanied with phthalide **6a** in 0–7% at most regardless of the presence or absence of TMSCl. Pd black and Pd₂(dba)₃ did not work at all, and **5a** was recovered unchanged.

^{(17) (}a) Chuit, C.; Foulon, J. P.; Normant, J. F. Tetrahedron Lett. **1980**, 36, 2305-2310; **1981**, 37, 1385-1389. (b) Bourgain-Commercon,
M.; Foulon, J. P.; Normant, J. F. J. Organomet. Chem. **1982**, 228, 321-326. (c) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. **1985**, 26, 6015-6018, 6019-6022. (d) Alexakis, A.; Berlan, J.; Besace, Y. Tetrahedron Lett. **1986**, 27, 1047-1050. (e) Horiguchi, Y.; Matsuzawa, S.; Nakamura, E.; Kuwajima, I. Tetrahedron Lett. **1986**, 27, 4025-4028. (f) Nakamura, E.; Matsuzawa, S.; Horiguchi, Y. Kuwajima, I. Tetrahedron Lett. **1986**, 27, 4029-4032.

 CO_3 induced faster consumption of **5a** (entries 10 and 11), though the formation of benzaldehyde **7a** again became predominant. Although these results are not satisfactory, it is notable that the aryl bromide (**5a**) was completely consumed within 24 h by the use of the palladium(0) catalyst in the presence of TMSCl and a large excess K_2CO_3 in refluxing toluene (entry 11).

Stereoselective Reduction of the Iminium Salts to Erythro- and Threo-Amino Alcohols. Use of aminobromobenzyl alcohols 19 and 20 carrying a tetrahydroisoquinoline ring as a key intermediate was planned for the synthesis of phthalideisoquinoline alkaloids by the carbonylative cyclization method. The isoquinoline substituent may act as an efficient internal trap of a liberated HBr molecule²⁵ and generate a steric repulsion to the OH and Br (or Pd) groups, which provides a favorable approach of both groups for the lactonization of **19** (or **20**) to a phthalideisoquinoline ring system. We started to prepare bromobenzyl alcohol **19a** as follows. Acid chloride 12a was prepared from 2-bromo-3,4dimethoxybenzaldehyde²⁶ by conventional methods via the corresponding benzyl alcohol 5a (98%), benzyl chloride 9a, benzyl cyanide 10a (91%), and phenylacetic acid 11a (92%). N-Acylation of 3,4-dimethoxyphenethylamine 13 with this acid chloride 12a gave acetamide 14a (91%), which was subjected to Bischler-Napieralski cyclization with POCl₃ in boiling toluene. The resultant dihydroisoquinoline (15a) (85%) was subsequently exposed to singlet oxygen²⁷ to produce **16a** in good yield. Methiodide 17a was readily obtained in 82% yield by heating 16a with excess CH₃I in CH₃CN (Scheme 2). Similar transformations yielded methiodides 17b-17f in good yields. Additional iminium salts such as benzyl bromides 17g and 17h and propyl iodide 17i were easily prepared from 16a or 16d, respectively.

Treatment of **17a** with excess fresh NaBH₄ in MeOH gave a mixture of *erythro*- (**19a**) and *threo*- (**20a**) amino alcohols in a ratio of 97:3,²⁸ in contrast to the results of NaBH₄ reduction of the analogous compounds reported.^{27b,29} Changing the solvent to AcOH produced a remarkable exclusive *erythro*-selectivity even in the reduction of other methiodides **17** and ketone **16a** (Table

- (22) Koide, K.; Ohno, M.; Kobayashi, S. *Synthesis* 1997, 1175–1176.
 (23) (a) Feghouli, A.; Fort, Y.; Vanderesse, R.; Caubùre, P. *Tetrahedron Lett.* 1988, *29*, 1379–1382. (b) Fort, Y.; Feghouli, A.; Vander-
- esse, R.; Caubùre, P. *J. Org. Chem.* **1990**, *55*, 5911–5915. (24) Ohkuma, T.; Hashiguchi, S.; Noyori, R. *J. Org. Chem.* **1994**, *59*, 217–221.
- (25) Effects of bulky amines as bases in a palladium(0)-catalyzed carbonylation were reported, see: Murahashi, S.; Imada, Y.; Taniguchi, Y.; Higashiura, S. J. Org. Chem. **1993**, 58, 1538–1545
- Y.; Higashiura, S. J. Org. Chem. 1993, 58, 1538–1545.
 (26) Sinhababu, A. K.; Borchardt, R. T. J. Org. Chem. 1983, 48, 2356–2360.
- (27) (a) Martin, N. H.; Jefford, C. W. *Helv. Chim. Acta* **1981**, *64*, 2189–2192. (b) Wert, K. L.; Chackalamannil, S.; Miller, E.; Dalton, D. R.; Zacharias, D. E.; Glusker, J. P. *J. Org. Chem.* **1982**, *47*, 5141–5150.
- (28) When partially decomposed NaBH₄, such as that in an old bottle, was used for these reductions, the *erythro*-selectivity became lower.

 $\begin{array}{l} \textbf{a}: R^{1} = R^{2} = R^{3} = R^{4} = \text{OMe}, R^{5} = \text{H} (R^{6} X = \text{MeI}) \\ \textbf{b}: R^{1} = R^{2} = \text{OMe}, R^{3} + R^{4} = \text{OCH}_{2}\text{O}, R^{5} = \text{H} (R^{6} X = \text{MeI}) \\ \textbf{c}: R^{1} + R^{2} = \text{OCH}_{2}\text{O}, R^{3} = R^{4} = \text{OMe}, R^{5} = \text{H} (R^{6} X = \text{MeI}) \\ \textbf{d}: R^{1} + R^{2} = R^{3} + R^{4} = \text{OCH}_{2}\text{O}, R^{5} = \text{H} (R^{6} X = \text{MeI}) \\ \textbf{e}: R^{1} = R^{2} = R^{4} = R^{5} = \text{OMe}, R^{3} = \text{H} (R^{6} X = \text{MeI}) \\ \textbf{f}: R^{1} + R^{2} = R^{4} + R^{5} = \text{OCH}_{2}\text{O}, R^{3} = \text{H} (R^{6} X = \text{MeI}) \\ \textbf{g}: R^{1} = R^{2} = R^{3} = R^{4} = \text{OMe}, R^{5} = \text{H} (R^{6} X = \text{BnBr}) \\ \textbf{h}: R^{1} + R^{2} = R^{3} = R^{4} = \text{OMe}, R^{5} = \text{H} (R^{6} X = \text{BnBr}) \\ \textbf{h}: R^{1} = R^{2} = R^{3} = R^{4} = \text{OMe}, R^{5} = \text{H} (R^{6} X = \text{BnBr}) \\ \textbf{h}: R^{1} = R^{2} = R^{3} = R^{4} = \text{OMe}, R^{5} = \text{H} (R^{6} X = \text{PrI}) \end{array}$

Table 2. NaBH4 Reduction of 3,4-Dihydroisoquinolines16 and 17

	ratio of 19:20 (is	olated yield of 19)
substrate	in MeOH ^a	in AcOH ^b
17a	97:3 (83%)	100:0 (89%)
17b	80:20	90:10 (80%)
17c	97:3 (92%)	
17d	95:5	100:0 (80%)
17e	97:3	100:0 (87%)
17f		100:0 (92%)
17g		100:0 (88%)
17 h		100:0 (95%)
17i	95:5 (85%)	
16a	90:10 (80%)	

^a 5 mol equiv of NaBH₄. ^b 10 mol equiv of NaBH₄.

2). Treatment of *N*-benzyl bromide salt **17g** or **17h** with NaBH₄ in AcOH gave only *N*-benzyl *erythro*-amino alcohol (**19g** or **19h**) in good yield, though the reduction

^{(18) (}a) Gawronski, J. K. Tetrahedron Lett. 1984, 25, 2605–2608.
(b) Picotin, G.; Miginiac, P. J. Org. Chem. 1987, 52, 4796–4798; Tetrahedron Lett. 1987, 28, 4551–4554. (c) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390–2392. (d) Jubert, C.; Knochel, P. J. Org. Chem. 1992, 57, 5431–5438. (e) Knochel, P.; Roozema, M. J.; Tucker, C.; Retherford, C.; Furlong, M. T.; AchyuthaRao, S. Pure Appl. Chem. 1992, 64, 361–369. (f) Takai, K.; Kakiuchi, T.; Uchimoto, K. J. Org. Chem. 1994, 59, 2671–2673.

 ⁽¹⁹⁾ Muzart, J.; Řiahi, A. Synth. Commun. 1991, 21, 1247–1250.
 (20) Takai, K.; Ueda, T.; Hayashi, T.; Moriwake, T. Tetrahedron Lett.
 1996, 37, 7049–7052.

⁽²¹⁾ Schneider, M. E.; Möhring, U.; Werner, H. J. Organomet. Chem. 1996, 520, 181–186.

^{(29) (}a) Moniot, J. L.; Shamma, M. J. Org Chem. 1979, 44, 4337–4342.
(b) McMahon, R. M.; Thornber, C. W. J. Chem. Soc., Perkin Trans. 1 1982, 2163–2167.

in MeOH failed. We were rather surprised that not only **17a**–**17f** and **16a** but also similar compounds with more bulky *N*-substituents such as **17g**, **17h**, and **17i** showed high *erythro*-selectivity on NaBH₄ reduction (Table 2), since it has been reported that the relative yields of the *threo*-alcohols were augmented consistently with the increasing size of the *N*-substituent of norhydrastine methyl ester.^{29a}

Treatment of **17a** with 1 mol equiv of NaBH₄ gave ketone **18a** together with **19a** in a 70:30 ratio. This ketone **18a** (92%) was decomposed during separation from **19a** on preparative TLC. The quantitative reduction of **17a** to **18a** was best accomplished by catalytic hydrogenation in MeOH in the presence of the Adams catalyst, without further reduction to **19a** or **20a**. Ketone **18d** was also isolated as a colorless crystal in 90% yield by catalytic hydrogenation. Reduction of ketone **18a** with NaBH₄ in MeOH under the same conditions as those described above gave a mixture of **19a** and **20a** (94:6) [**19a** in 90% isolated yield (**19d** from **18d** in 80%)], proving that the reduction of **17** to **19** proceeded via the corresponding ketones **18**.

In general, ketones **18** were sensitive to air. *N*-Benzyl ketones **18g** and **18h** were thus labile and could not be isolated. When a stirred solution of **18a** in MeOH was treated with oxygen for 1 h at room temperature, it was transformed to *N*-methylcorydaldine³⁰ and 2-bromo-3,4-dimethoxybenzoic acid almost quantitatively. When **19a** and **20a** were heated under reflux in toluene in the presence of the mild oxidant CuCl₂ (2 equiv), a 3,4-dihydroisoquinolinium salt and the corresponding benz-aldehyde were almost quantitatively formed.³¹

When **17a** was treated with 2 mol equiv of LiAlH₄ in THF at room temperature for 5 min, the *threo*-amino alcohol **20a** was obtained in preference to the *erythro*-amino alcohol **19a** in a 5:2 ratio (>90%). Because of the close R_f values of both isomers on TLC, a mixture was converted with Ac₂O-pyridine to the corresponding acetates which were separated on silica gel TLC as described in detail in the Experimental Section. Saponification of each acetate with 5% potassium hydroxide in MeOH at 50 °C for 5 min gave pure *threo*- **(20a)** and *erythro*- **(19a)** amino alcohols, respectively.

Reduction of **17a** was also examined using DIBALH and bis(2-methoxyethoxy)alminum hydride. As shown in Table 3, the latter reagent showed *threo*-selectivity similar to that of the LiAlH₄ reduction. The *erythro*selectivity in the reduction of the salts **17a** with NaBH₄ can be well explained according to Cram's rule by the attack (route a, Scheme 4) of hydride from the open side.^{32a} The opposite selectivity by aluminum hydride reduction has not yet been clearly explained, but the reduction may proceed via the formation of an oxygen– aluminum–nitrogen complex. Alternatively, there may be a similar chelation holding a lithium (or sodium) atom

(32) (a) Cram, J. D.; Abd Elhafez, F. A. J. Am Chem. Soc. **1952**, 74, 5828–5835. (b) Cram, D. J.; Wilson, D. R. J. Am. Chem. Soc. **1963**, 85, 1245–1249.

Table 3.Reduction of Methiodides 17a-d and Ketone18a with Hydride Reagents in THF

substrate	reagent	ratio of products 19:20
17a	<i>i</i> -Bu ₂ AlH ^a	76:24
17a	NaAl(OCH ₂ CH ₂ OCH ₃) ₂ H ₂ ^a	40:60
17a	LiAlH ₄ ^b	29:71
17b	LiAlH ₄ ^b	33:67
17c	LiAlH ₄ ^b	17:83
17d	LiAlH ₄ ^b	25:75
18a	LiAlH ₄ ^b	28:72

^a 4 mol equiv at rt for 30 min. ^b 2 mol equiv at rt for 5 min.

Scheme 3 I-R⁶ NaBH₄ MeOH or 16a AcOH and Br or 17a~i LiAIH₄ THF 18 CO, K₂CO₃, TMSCI (threo) 76~92% (erythro) J-R⁶ н н ·····OH OH н H) B Br R R³ R Ŕ4 19a~j 20a~d Pd(0Ac)₂-PPh₃ CO, K₂CO₃, TMSCI 60~74% 85~92% toluene, reflux from 17 R³ \mathbf{R}^5 1a~h. j.l 2a~d **a** : R¹=R²= R³=R⁴=OMe, R⁵=H, R⁶=Me **b** : $R^1 = R^2 = OMe$, $R^3 + R^4 = OCH_2O$, $R^5 = H$, $R^6 = Me$ c: R¹+R²=OCH₂O, R³=R⁴=OMe, R⁵=H, R⁶=Me $d: R^{1}+R^{2}=R^{3}+R^{4}=OCH_{2}O, R^{5}=H, R^{6}=Me$ $e: R^1 = R^2 = R^4 = R^5 = OMe, R^3 = H, R^6 = Me$ **f** : $R^1 + R^2 = R^4 + R^5 = OCH_2O$, $R^3 = H$, $R^6 = Me$ g: R¹=R²= R³=R⁴=OMe, R⁵=H, R⁶=Bn **h** : $R^1 + R^2 = R^3 + R^4 = OCH_2O$, $R^5 = H$, $R^6 = Bn$ i : $R^1 = R^2 = R^3 = R^4 = OMe$, $R^5 = H$, $R^6 = Pr$ $i : R^1 = R^2 = R^3 = R^4 = OMe, R^5 = R^6 = H$

 \mathbf{k} : R¹+R²= R³+R⁴=OCH₂O, R⁵=R⁶=H

between the intermediate ketone (**18**) and aluminum hydride in accordance with Cram's chelate model,^{32b} followed by the attack (route b) of "internal" hydride on the carbonyl group to give *threo*-alcohol **20** (Scheme 4). Reduction with DIBALH showed *erythro*-selectivity, prob-

^{(30) (}a) Späth, E.; Epstein, H. *Ber.* **1926**, *59*, 2791–2800. (b) Kupchan, S. M.; Kubota, S.; Fujita, E.; Kobayashi, S.; Block, J. H.; Telang, S. A. *J. Am. Chem. Soc.* **1966**, *88*, 4212–4218. (c) Reference 35b.

⁽³¹⁾ A similar oxidative cleavage of laudanosine with ceric ammonium nitrate has been reported. See Ralph, I.; Bick, C.; Bremner, J. B.; Cava, M. P.; Wiriyachitra, P. *Aust. J. Chem.* **1978**, *31*, 321–326. With 2 mol equiv of CuCl₂, CuCl, CuBr₂, CuBr, CuI₂, or CuI in boiling toluene, oxidative cleavages of **19**, the debromo derivative of **19a**, and *N*-methylephedrine were also observed.

ably owing to the attack of hydride from the open side. Treatment of other methiodides, 17b, 17c, and 17d, with $LiAlH_4$ gave the corresponding *threo*-alcohols **20** in preference to *erythro*-alcohols **19** in ratios of 2:1–5:1.

Synthesis of Phthalideisoquinoline Alkaloids. Carbonylation of 19a (Scheme 3) with CO (1 atm) in the presence of Pd(OAc)₂ (20 mol %), PPh₃ (40 mol %), and K_2CO_3 (2 mol equiv) in boiling toluene under nearly standard conditions $^{2a}\xspace$ proceeded very slowly and 24 h later gave the lactone 1a in a yield lower than 10%, contrary to the expectation described above. However, this was again overcome by the addition of TMSCl (2 equiv) and a large excess of K₂CO₃ (20 molar equiv), which dramatically accelerated the reaction rate to produce (\pm) -cordrastine II (1a) (from 19a) and (\pm) cordrastine I (2a) (from 20a) in almost quantitative yields. The debromo derivative of 18a or 19a, which was the expected byproduct corresponding to the aldehyde 7a or alcohol 8a described above, was not detected. Application of this procedure to other *erythro*-amino alcohols **19b**-**f** gave almost the same results. When the aforementioned *threo*-amino alcohol-rich mixture (19a:20a = 1:2.5) was subjected to the accelerated lactonization, the products 1a and 2a were separable from each other on silica gel TLC, and 2a was provided in 63% yield starting from methiodide 17a. An attempt to perform the direct lactonization to norcordrastine (1j) of amino alcohol 19j having a secondary amino group gave an intractable mixture including a small amount of 1j. However, similar lactonizations of N-benzyl erythro-amino alcohols 19g and 19h, followed by removal of an N-benzyl group of the resultant phthalide 1g (91%) and 1h (75%) by palladiumcatalyzed hydrogenolysis, gave (\pm) -norcordrastine II $(1j)^{33,34}$ and (\pm) -norbicuculline (1k), respectively, in good yields (Scheme 3).

Synthesis of Indolo[2,1-a]isoquinolines.35 Indolo-[2,1-a]isoquinolines have a structural feature of the socalled dibenzopyrrocoline alkaloids, such as cryptaustoline and cryptowoline, isolated from the bark of Cryptocarya bowiei.³⁶ Syntheses of these unique tetracyclic structures have been accomplished by several methods,³⁷ such as a benzyne reaction³⁸ of 1-(2'-bromo-4',5'-dialkoxybenzyl)isoquinolines, oxidative coupling of 1-benzylisoquinolines,³⁹ enamine photocyclization,⁴⁰ addition of benzyl anion to 3,4-dihydroisoquinoline,41 and radical cycliza-

tion and Bischler–Napieralski cyclization,⁴² which give either 9,10-dialkoxyindolo[2,1-a]isoquinolines or a mixture of 9,10- and 10,11-dialkoxy-substituted derivatives. Our present method is able to produce 8,9-dialkoxysubstituted indolo[2,1-a]isoquinolines or their 9,10-dialkoxy regioisomers selectively.

erythro-1-(2'-Bromo-3',4'-dimethoxy-a-hydroxybenzyl)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline 19a was treated with Pd(OAc)₂, PPh₃, and excess K₂CO₃ in boiling DMF in an atmosphere of carbon monoxide. However, the expected carbonylation leading to the formation of a phthalide ring did not occur at all, and instead, a new compound **3a** with no *N*-methyl group was obtained. After careful examination to clarify the reaction pathway, it was found that this reaction took place slowly without CO gas, Pd(OAc)₂, and PPh₃, and it was completed in 3 days. On the basis of ¹H and ¹³C NMR analysis in comparison with the spectral data reported for a similar system, $^{\rm 38d,g,40}$ the structure of the exclusive product was determined to be 2,3,8,9-tetramethoxy-5,6dihydroindolo[2,1-a]isoquinoline 3a (Scheme 5). This was also supported by measuring the nuclear Overhauser effect as follows. Irradiation of the signal of the proton at position 12 (δ 6.67) resulted in an enhancement of the signal areas of 1-H (20%, δ 7.18) and 11-H (10%, δ 7.24). Irradiation of the doublet signal of the proton at position 10 (δ 6.81) resulted in an enhancement of the signal areas of the aforementioned 11-H (19%) and the methoxy protons (14%, δ 3.95) at position 9.

Methylenedioxy derivatives 19b, 19c, and 19d were also transformed to the corresponding indolo[2,1-a]isoquinolines 3b, 3c, 3d in good yields under the conditions described above. The N-H derivative of 19a (19j) gave 3a in 13% yield, while the N-benzyl derivative (19g) failed to give 3a. This reaction appears to require a fairly

⁽³³⁾ Kerekes, P.; Gaál, G.; Bognár, R.; Töró, T.; Costisella, B. Acta Chim. Acad. Sci. Hung. 1980, 105, 283-291.

⁽³⁴⁾ Clarke, S. I.; Kasum, B.; Prager, R. H.; Ward, A. D. Aust. J. Chem. 1983, 36, 2493-2498.

⁽³⁵⁾ For a preliminary report, see Orito, K.; Miyazawa, M.; Sugi-

 ⁽³⁶⁾ For a premiurally report, see Onto, in, Miguata, M., Bagranome, H. Heterocycl. Commun. 1995, 1, 239–240.
 (36) Ewing, J.; Hughes, G. K.; Ritchie, E.; Taylor, W. C. Nature 1952, 169, 618–619; Aust J. Chem. 1953, 6, 78–85.

⁽³⁷⁾ Elliott, I. W. In The Alkaloids; Brossi, A., Ed.; Academic Press: Orlando, 1987; Vol. 31; pp 101-116.

^{(38) (}a) Kametani, T.; Ogasawara, K. J. Chem. Soc. (C) 1967, 2208-2212. (b) Benington, F.; Morin, R. D. J. Org. Chem. 1967, 32, 1050-1053. (c) Kametani, T.; Fukumoto, K.; Nakano, T. J. Heterocycl. Chem. 1972, 9, 1363-1366. (d) Kametani, T.; Shibuya, S.; Kano, S. J. Chem. Soc., Perkin Trans. 1 1973, 1212-1214. (e) Ahmad, I.; Gibson, M. Can. J. Chem. 1975, 53, 3660-3664. (f) Kessar, S. V.; Batra, S.; Nadir, U. K.; Gandhi, S. S. Ind. J. Chem. 1975, 13, 1109–1112. (g) Mak, C.-P. Brossi, A. Heterocycles 1979, 12, 1413-1416. (h) Ambros, R.; von Angerer, S.; Wiegrebe, W. Arch. Pharm. **1988**, *321*, 481–486. (i) Meyers, A. I.; Sielecki, T. M. J. Am. Chem. Soc. **1991**, *113*, 2789–2790.

^{(39) (}a) Robinson, R.; Sugasawa, S. J. Chem. Soc. 1932, 798-805. (b) Harley-Mason, J. J. Chem. Soc. 1953, 1465-1466. (c) Hess, U.; (4) Hiller, K.; Schroeder, R. S. J. Prakt. Chem. 1977, 319, 568–572.
 (40) Ninomiya, I.; Yasui, J.; Kiguchi, T. Heterocycles 1977, 6, 1855

¹⁸⁶⁰

⁽⁴¹⁾ Takano, S.; Satoh, S.; Ogasawara, K. Heterocycles 1987, 26, 1483 - 1485

^{(42) (}a) Mathew, K. K.; Menon, K. N. Proc. Indian Acad. Sci. 1949, 29A, 361–363. (b) Yasuda, S.; Hirasawa, T.; Yoshida, S.; Hanaoka, M. Chem. Pharm. Bull. **1989**, *37*, 1682–1683.

high nucleophilicity of the nitrogen atom but not a bulky *N*-substituent. When a mixture of **19a** and its *threo*isomer **20a** was subjected to the present cyclization, the latter (**20a**) remained essentially unchanged, though a small amount of the *threo* **20a** may have been consumed with the production of **3a** through isomerization to the *erythro* **19a**.¹² 1-(2'-Bromo-3',4'-dimethoxybenzyl)-2-methyltetrahydroisoquinoline **22f** and its regioisomer **22g** $[(\pm)-6'$ -bromotetrahydrolaudanosine^{38e}] (Scheme 5) were unreactive, while it was reported that the benzyne reaction converted **22e** and **22g** to a regioisomer of **3a**, 2,3,9,10-tetramethoxy-5,6-dihydroindolo[2,1-*a*]isoquinoline **3e** (from **22e**),^{38a,d,g} and its *N*-methyl-5,6,12,12atetrahydro derivative (from **22g**).^{38e} When methiodides

21a and **21e**^{38e} were exposed to this K₂CO₃ treatment for 3 days, only traces of indolo[2,1-a]isoquinolines 3a and 3e (less than 3% yield for both) were observed on the ¹H NMR spectra of their reaction mixtures. These results appear to show that the cyclization does not start with the formation of N-methylenamine intermediate due to a simple dehydration of 19. The reaction probably started with a nucleophilic attack of the nitrogen atom on the aromatic carbon bearing a bromine atom and may have proceeded with an efficient relief of steric repulsions between the Br atom, hydroxy, and N-methyl groups, for instance, in one possible pathway shown in a preliminary report.^{35,43} We later found that even 4',5'-dialkoxy derivatives 19e and 19f gave lower yields than those for 3a-d the corresponding indolo[2,1-a]isoquinolines 3e and 3f, which have four alkoxy groups at the same 2, 3, 9, 10 positions as the aformentioned natural products. Nevertheless, these methods provided a new route to the indolo-[2,1-*a*]isoquinoline system.

Synthesis of Protoberberine Alkaloids. Protoberberines are known to have a variety of biological activities, including antileukemic and antitumor activities.⁴⁴ Antitumor and anticancer activities of 8-oxoberbines have also been reported.^{44b} The natural berbines occur in a 9,-10-alkoxy-substitution pattern⁴⁵ which is obtained with difficulty by the usual cyclization methods such as the traditional Bischler–Napieralski, Pictet–Spengler, or Pomeranz–Fritsch reactions, as briefly described by

⁽⁴³⁾ An alternative reaction pathway ($\mathbf{i} \rightarrow \mathbf{ii} \rightarrow \mathbf{iii}$) with a leaving group X on a nitrogen-containing ring system 3, based on the thermal electrocyclization of a pentadienyl anion to a cyclopentenyl anion, cannot be discarded. For selected references, see Stapp, P. R.; Kieinschmidt, R. F. J. Org. Chem. 1965, 30, 3006–3009; Slaugh, L. H. J. Org. Chem. 1967, 32, 108–113; Bates, R. B.: McCombs, D. A. Tetrahedron Lett. 1969, 977–978; Shoppee, C. W.; Henderson, G. N. J. Chem. Soc., Perkin Trans. 1 1975, 765–772.

(44) (a) See ref 3 cited in ref 48i. (b) See ref 12 cited in ref 48i. (45) See ref 1 cited in ref 48i.

Narasimuhan,⁴⁶ to give rather selectively 10,11-alkoxy derivatives. Therefore, considerable efforts have been directed toward the selective synthesis of berbines with the natural substitution pattern, and several synthetic methods,^{9,47,48} including some enantioselective approaches,^{48a,d,e,i} have been reported.

Palladium(0)-catalyzed carbonylation of 1-(2'-bromo-4',5'-dialkoxybenzyl)tetrahydroisoquinolines was reported by Pandey.^{3i,j} Carbonylation of a similar isoquinoline system was also reported to be catalyzed with Fe₃(CO)₁₂ and Co₂(CO)₈.⁴⁹ In the present study, we investigated the carbonylation using 1-(2'-bromo-3',4'-dialkoxybenzyl)tetrahydroisoquinolines **22a**–**d** as substrates which were easily prepared by NaBH₄ reduction of the abovementioned dihydroisoquinolines **15a**–**d** (Scheme 6). By treatment with CO in the presence of Pd(OAc)₂ (20 mol %), PPh₃ (40 mol %), and excess K₂CO₃ in boiling toluene, 2-bromo-3,4-dimethoxybenzyl derivatives **22a** and **22c** underwent relatively slow carbonylation and, 26 h later, gave 8-oxoberbines **23a** in 75% and **23c** in 85% isolated

(46) Narasimhan, N. S.; Mali, R. S.; Kulkarni, B. K. *Tetrahedron* **1983**, *39*, 1975–1982.

(49) Trifonov, L. S.; Orehovats, A. S. Tetrahedron Lett. 1985, 26, 3159-3162.

⁽⁴⁷⁾ For reviews, see (a) Kametani, T.; Ihara, M. *Heterocycles* **1979**, *13*, 497–530. (b) Pandey, G. D.; Tiwari, K. P. *Heterocycles* **1980**, *14*, 59–82. (c) Bhakuni, D. S.; Jain, S. In *The Alkaloids*; Brossi, A., Ed.; Academic Press: Orlando, 1986; Vol. 28; pp 95–171.

⁽⁴⁸⁾ Selected articles published on and after 1986; Synthesis based on the modified Pictet-Spengler, Bischler-Napieralski, or Pomer-antz-Fritsch reaction, see (a) Czarnocki, Z.; Maclean, D. B.; Szarek, W. A. Bull. Soc. Chim. Belg. 1986, 95, 749-769. (b) Orito, K. 234-335; J. Chem. Res. (M) 1992, 2801-2819. (e) Commins, D. L. Thakker, P. M.; Baevsky, M. F. Tetrahedron 1997, 53, 16327-16340. Synthesis based on nucleophilic addition of carbanions to 3,4-dihydroisoquinolines, see (f) Warrener, R. N.; Lin, L.; Russell, R. A. Tetrahedron 1988, 54, 7485-7496. (g) Pyne, G. S.; Branko, D. J. Org. Chem. 1990, 55, 1932-1936. (h) Kessar, S. V.; Singh, P.; Vohra, R Kaur, N. P.; Venugopal, D. J. Org. Chem. **1992**, 57, 6716–6720. Synthesis based on alkylation on a C-1 metalated tetrahydroisoquinoline, see (i) Matulenko, M. A.; Meyers, A. I. J. Org. Chem. 1996, 61, 573-580. Synthesis based on photochemical cyclization of enamides, see (j) Weimar, C.; von Angerer, S.; Wiegrebe, W. Arch. Pharm. 1991, *324*, 907–912. Synthesis based on radial cyclization, see (k) Dai-Ho, G.; Mariano, P. S. *J. Org. Chem.* **1987**, *52*, 706–707. (l) Takano, S.; Suzuki, M.; Ogasawara, K. *Heterocycles* **1990**, *31*, 1151–1156. (m) Takano, S.; Suzuki, M.; Kijima, A.; Ogasawara, K. Tetrahedron Lett. 1990, 31, 2315-2318. (n) Nimgirawath, S.; Ponghusabun, O.-a. Aust. J. Chem. 1994, 47, 951-955. Synthesis based on cycloaddition reaction of isoquinoline-pyrroline-2,3-dione with benzyne, see (o) Cobas, A.; Guitián, E.; Castedo, L. J. Org. Chem. 1992, 57, 6765-6769. Synthesis based on palladium-catalyzed cyclization, see (p) Bombrun, A.; Sageot, O. Tetrahedron Lett. 1997, 38, 1057-1060.

yield. Their methylenedioxy derivatives (**22b** and **22d**) were consumed within 18 h and gave the corresponding 8-oxoberbines **23b** and **23d** in good yields. Further, by treating with excess LiAlH₄ in the reported manner,^{48h,i,50,51} these lactams were converted almost quantitatively to protoberberine alkaloids **4a**–**d**.

Conclusions

A general route for synthesis of phthalideisoquinoline alkaloids has been developed. The key steps are the stereoselective reduction of 1-(2'-bromobenzoyl)-3,4-dihydroisoguinoline methiodide 18 with sodium borohydride or lithium aluminum hydride, followed by a palladium(0)-catalyzed carbonylation of the resultant erythroor threo-amino alcohols 19 and 20 aided by chlorotrimethylsilane. The synthesis of eight phthalideisoquinoline alkaloids having methoxy- and/or methylenedioxy-substituents together with nor- and iso-types of the alkaloids has been successfully demonstrated. Treatment of erythroamino alcohols 19 with potassium carbonate in boiling DMF provided a new method for construction of the indolo[2,1-a]isoquinoline skeleton characteristic of the dibenzopyrrocoline alkaloids, such as cryptaustoline and cryptowoline, isolated from Cryptocaria bowiei. Palladium(0)-catalyzed carbonylation of 1-(2'-bromo-3',4'dialkoxybenzyl)tetrahydroisoquinolines 22 gave 8-oxoberbines 23, which were treated with excess LiAlH₄ in boiling THF to give protoberberine alkaloids 4 in good yields.52

Experimental Section

General Procedures. Infrared spectra were recorded as Nujol mulls, unless otherwise specified. ¹H (90, 270, 400 MHz) and ¹³C NMR (67.5 MHz) spectra were measured in CDCl₃ (99.8 atom % D, containing 0.03% v/v TMS, Aldrich). Mass spectra were recorded with EI at 70 eV. TLC was carried out on a Merck silica gel 60 PF₂₅₄ (Nos. 7749 and 5554). The following solvents and reagents were distilled prior to use: THF (sodium benzophenone ketyl), benzene (P₂O₅), toluene (P₂O₅), CH₂Cl₂ (P₂O₅), pyridine (CaH₂), and Et₃N (CaH₂).

Palladium(0)-Catalyzed Carbonylation of 2-Bromo-3,4-dimethoxybenzyl Alcohol (5a). Bromo-3,4-dimethoxybenzyl alcohol 5a (24 mg, 0.1 mmol), Pd(OAc)₂ (4.6 mg, 20 mol %), PPh₃ (10.6 mg, 40 mol %), and the appropriate additives in dry toluene (2 mL) were charged in a 10-mL pair-shaped flask, having a magnetic stirring bar in it, connected with a condenser, on which a three-way stopcock was attached for a CO gas balloon and an aspirator. After degassing with an aspirator followed by charging with CO gas three times, the reaction flask was dipped into an oil bath preheated at 140 °C, and the reaction mixture was refluxed with stirring for 24 h. The reaction mixture was allowed to cool to room temperature and was then filtered through a Celite pad. The solvent was removed on a rotary evaporator, and the ¹H NMR spectrum of the residue was measured for determination of the product ratio. When Me₃SiCl (22 mg, 0.2 mmol) was used as an additive, such as in entries 9-11, the residue was then dissolved in MeOH (3 mL) containing three drops of 2 N HCl, and, 30 min later, the solution was evaporated at room temperature. The oily residue was extracted with CH₂Cl₂ (5 mL) and water (5 mL), and the CH₂Cl₂ extracts were dried (Na₂SO₄) and evaporated to give the crude products for ¹H NMR analysis.

2-Bromo-3,4-dimethoxybenzyl Alcohol (5a). General Procedure. To a stirred solution of 2-bromo-3,4-dimethoxybenzaldehyde²⁶ (8.466 g, 34.546 mmol) in THF (45 mL) and MeOH (45 mL) was added NaBH₄ (0.653 g, 17.273 mmol) in portions. The mixture was stirred for 2 h and then concentrated to give an oily residue, which was dissolved in CH_2Cl_2 (150 mL) and water (50 mL) containing 2 N HCl (5 mL). The organic layer was washed with water (50 mL \times 2), dried (Na₂- SO_4), and condensed to give a solid (8.532 g), mp 76-79 °C. Recrystallization from Et_2O -petroleum ether gave **5a** (8.360 g, 98%); mp 78-80 °C; IR (neat) 3378, 1596, 1489 cm⁻¹; ¹H NMR (270 MHz) δ 2.18 (br s, 1H), 3.86, 3.87 (each br s, each 3H), 4.68 (s, 2H), 6.87, 7.16 (AB type, J = 8.4 Hz, each 1H); MS m/z (rel int) 248 (M⁺, 94), 246 (M⁺, 100), 231 [(M - CH₃)⁺, 40], 229 [(M - CH₃)⁺, 31], 167 [(M - Br)⁺, 60]. Anal. Calcd for C₉H₁₁O₃Br: C, 43.75; H, 4.49; Br, 32.34. Found: C, 43.87; H, 4.63; Br, 32.27.

2-Bromo-3,4-(methylenedioxy)benzyl Alcohol (5b): 96% yield from 2-bromo-3,4-(methylenedioxy)benzaldehyde;²⁶ mp 114–115 °C (petroleum ether); IR 3270, 1617, 1497 cm⁻¹; ¹H NMR (270 MHz) δ 1.95 (br s, 1H), 4.67 (s, 2H), 6.05 (s, 2H), 6.75, 6.94 (AB type, J = 8.1 Hz, each 1H). Anal. Calcd for C₈H₇O₃Br: C, 41.59; H, 3.05; Br, 34.58. Found: C, 41.36; H, 2.97; Br, 34.58.

2-Bromo-3,4-dimethoxyphenylacetonitrile (10a). General Procedure. To a solution of benzyl alcohol 5a (8.333 g. 33.7 mmol) in dry benzene (2 mL) was dropwise added SOCl₂ (6.02 g, 50.55 mmol). After the mixture was stirred at room temperature overnight, excess SOCl₂ was removed by azeotropic distillation with benzene under reduced pressure. The crude oily benzyl chloride **9a** [¹H NMR (90 MHz) δ 3.86, 3.89 (s, each 3H), 4.69 (s, 2H), 6.85, 7.20 (AB type, J = 8.4 Hz, each 1H] was dissolved in a mixture of DMSO (15 mL) and benzene (7 mL). To this solution was added NaCN (powdered, 3.303 g, 67.4 mmol) in portions. The mixture was stirred for 2 h, poured into water (100 mL), and extracted with benzene (15 mL \times 5). The combined benzene layers were washed with saturated brine (20 mL \times 5), dried (Na₂SO₄), and evaporated. The residue was distilled under reduced pressure to give 10a as a colorless oil (7.824 g, 91%), bp 125–127 °C (0.2 mmHg). IR 2250, 1597, 1490 cm⁻¹; ¹H NMR (270 MHz) & 3.79 (s, 2H), 3.86 (s, 3H), 3.89 (s, 3H), 6.90, 7.36 (AB type, J = 8.4 Hz, each 1H). Anal. Calcd for C₁₀H₁₀NO₂Br: C, 46.90; H, 3.94; N, 5.47; Br, 31.2. Found: C, 46.75; H, 3.98; N, 5.50; Br, 31.39.

2-Bromo-3,4-(methylenedioxy)acetonitrile (10b): 89% yield; mp 149–151 °C ($CH_2Cl_2-Et_2O$); IR 2250, 1621, 1499 cm⁻¹; ¹H NMR (270 MHz) δ 3.75 (s, 2H), 6.08 (s, 2H), 6.78, 6.99 (AB type, J = 8.1 Hz, each 1H). Anal. Calcd for C₉H₆-NO₂Br: C, 45.03; H, 2.52; N, 5.84; Br, 33.29. Found: C, 44.87; H, 2.48; N, 5.82; Br, 33.49.

2-Bromo-3,4-dimethoxyphenylacetic Acid (11a). General Procedure. A solution of **10a** (7.760 g, 30.3 mol) in EtOH (100 mL) and 4 N NaOH (50 mL) was refluxed for 20 h. The cooled reaction mixture was diluted with water (200 mL) and then washed with CH_2Cl_2 (50 mL). The water layer was separated, acidified with concentrated HCl (20 mL), and extracted with CH_2Cl_2 (30 mL × 3). The extracts were washed with water (50 mL × 2), dried (Na₂SO₄), and concentrated to give a solid (8.881 g). Recystallization from $CH_2Cl_2 - Et_2O$ gave **11a** (7.650 g, 92%): mp 154–155 °C; IR 3600–2800, 1710, 1596, 1490 cm⁻¹; ¹H NMR (270 MHz) δ 3.80 (s, each 1H), 3.86 (s, 3H), 3.87 (s, 3H), 6.85, 7.02 (AB type, J = 8.4 Hz, each 1H); (90 MHz) δ 5.30 (br s, 1H). Anal. Calcd for $C_{10}H_{11}O_4Br: C$, 43.66; H; 4.03; Br, 29.05. Found: C, 43.50; H, 3.97; Br, 29.07.

2-Bromo-3,4-(methylenedioxy)phenylacetic acid (11b): 89% yield; mp 183–185 °C (MeOH); IR 3200–2000, 1670 cm⁻¹; ¹H NMR (270 MHz) δ 3.76 (s, 2H), 6.05 (s, 2H), 6.73, 6.79 (AB q, J = 7.7 Hz, each 1H). Anal. Calcd for C₉H₇O₄Br: C, 41.73; H, 2.72; Br, 30.84. Found: C, 41.78; H, 2.76; Br, 30.67.

N-(3,4-Dimethoxyphenethyl)-2-bromo-3,4-dimethoxyphenylacetamide (14a). General Procedure. After a mixture of **11a** (550 mg, 2 mmol), SOCl₂ (480 mg, 4 mmol), and dry benzene (10 mL) was stirred at 50–60 °C for 2 h, excess SOCl₂ was removed under reduced pressure. The resulting acid chloride **12a** was dissolved in dry benzene (5 mL) and added

 ⁽⁵⁰⁾ Cushman, M.; Dekow, F. W. J. Org. Chem. 1979, 44, 407–409.
 (51) Iwasa, K.; Gupta, Y. P.; Cushman, M. J. Org. Chem. 1981, 46, 4744–4750.

⁽⁵²⁾ Asymmetric reduction of imines **15**–**17** is under investigation, and the results will be reported later.

dropwise to a stirred solution of 3,4-dimethoxyphenethylamine 13a (290 mg, 1.8 mmol) and pyridine (237 mg, 3 mmol) in dry benzene (5 mL). The mixture was continuously stirred at room temperature overnight and then poured into water (30 mL). The benzene layer was separated. The water layer was extracted once with benzene (10 mL). The combined benzene layers were washed with 0.5 N HCl (10 mL), 0.5 N NaOH (10 mL), and water (20 mL) and dried (Na₂SO₄). Evaporation of benzene, followed by recrystallization of the crude product from benzene-Et₂O, afforded **14a** (710 mg, 91%): mp 103-105 °C; IR 3304, 1645, 1593, 1492 cm⁻¹; ¹H ŇMR (270 MHz) δ 2.70 (t, J = 7.0 Hz, 2H), 3.45, 3.47 (t, J = 7.0 Hz, each 1H), 3.63 (s, 2H), 3.83, 3.84, 3.85, 3.87 (each s, each 3H), 5.42 (br s, 1H), 6.60 (dd, J = 8.0, 1.8 Hz, 1H), 6.64 (d, J = 1.8 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 6.82, 6.98 (AB q, J = 8.4 Hz, each 1H). Anal. Calcd for C₂₀H₂₄NO₅Br: C, 54.81; H, 5.52; N, 3.20; Br, 18.23. Found: C, 54.98; H, 5.46; N, 3.12; Br, 18.24.

N-(3,4-Dimethoxyphenethyl)-2-bromo-3,4-(methylenedioxy)phenylacetamide (14b): 85% yield from 12b and 13a; mp 178–179 °C (benzene–Et₂O); IR 3290, 1647, 1593, 1519 cm⁻¹; ¹H NMR (270 MHz) δ 2.70 (t, J = 7.0 Hz, 2H), 3.46, 3.48 (t, J = 6.6 Hz, each 1H), 3.58 (s, 2H), 3.84, 3.86 (s, each 3H), 5.36 (br s, 1H), 6.07 (s, 2H), 6.60 (dd, J = 7.9, 2.0 Hz, 1H), 6.63 (d, J = 2.0 Hz, 1H), 6.74 (d, J = 7.9 Hz, 1H), 6.69, 6.74 (AB type, J = 7.9 Hz, each 1H). Anal. Calcd for C₁₉H₁₈-NO₅Br: C, 54.04; H, 4.77; N, 3.32; Br, 18.92. Found: C, 53.82; H, 4.73; N, 3.37; Br, 19.13.

N-[(3,4-Methylenedioxy)phenethyl]-2-bromo-3,4dimethoxyphenylacetamide (14c): 86% yield from 12a and 13b; mp 163–165 °C (benzene); IR 3280, 1648, 1598, 1505, 1498 cm⁻¹; ¹H NMR (270 MHz) δ 2.66 (t, J = 6.9 Hz, 2H), 3.41, 3.43 (t, J = 6.8 Hz, each 1H), 3.63 (s, 2H), 3.85 (s, 3H), 3.88 (s, 3H), 5.39 (br s, 1H), 5.91 (s, 2H), 6.50 (dd, J = 7.8, 1.5 Hz, 1H), 6.56 (d, J = 1.5 Hz, 1H), 6.66 (d, J = 7.8 Hz, 1H), 6.83, 7.00 (AB type, J = 7.8 Hz, each 1H). Anal. Calcd for C₂₀H₂₄NO₅Br: C, 54.81; H, 5.52; N, 3.20; Br, 18.23. Found: C, 54.98; H, 5.46; N, 3.12; Br, 18.24.

N-[3,4-(Methylenedioxy)phenethyl]-2-bromo-3,4-(methylenedioxy)phenylacetamide (14d): 86% yield from **12b** and **13b**; mp 103–105 °C (benzene–Et₂O); IR 3290, 1636, 1549, 1506, 1492 cm⁻¹; ¹H NMR (400 MHz) δ 2.66 (t, J = 6.8Hz, 2H), 3.41, 3.44 (t, J = 6.8 Hz, each 1H), 3.59 (s, 2H), 5.33 (br s, 1H), 5.93, 6.07 (s, each 2H), 6.50 (d, J = 7.8 Hz, 1H), 6.71, 6.75 (AB type, J = 7.8 Hz, each 1H). Anal. Calcd for C₁₈H₁₆NO₅Br: C, 53.22; H, 3.97; N, 3.45; Br, 19.67. Found: C, 53.31; H, 4.01; N, 3.66; Br, 19.64.

1-(2-Bromo-3,4-dimethoxybenzyl)-6,7-dimethoxy-3,4dihydroisoquinoline (15a). General Procedure. A mixture of acetamide 14a (7.013 g, 16 mmol), POCl₃ (12.240 g, 80 mmol), and dry toluene (100 mL) was refluxed under N₂ for 3 h. The cooled mixture was poured into ice-water (100 mL) and stirred for 2 h. The organic layer was discarded. The water layer and precipitates were then basified with 2 N NaOH (200 mL) and extracted with CH_2Cl_2 (50 mL \times 3). The extracts were washed with water (100 mL), dried (Na₂SO₄), and evaporated to give 15a as a solid (5.731 g, 85%), mp 120-124 °C. Recrystallization from benzene-Et₂O gave an analytical sample, mp 123-125 °C; Rf 0.15 on silica gel TLC plate (5% MeOH-CH₂Cl₂): IR 1621, 1606, 1595, 1573, 1518 cm⁻¹; ¹H NMR (270 MHz) δ 2.67 (t, J = 7.6 Hz, 2H), 3.72 (t, J = 7.6 Hz, 2H), 3.79, 3.82, 3.85, 3.88 (each s, each 3H), 4.15 (s, 1H), 6.66, (s, 1H), 6.76, 6.98 (AB q, J = 8.4 Hz, each 1H). Anal. Calcd for C₂₀H₂₂-NO₄Br: C, 57.15; H, 5.28; N, 3.33; Br, 19.01. Found: C, 57.16; H, 5.30; N, 3.37; Br; 18.91.

1-[2-Bromo-3,4-(methylenedioxy)benzyl]-6,7-dimethoxy-3,4-dihydroisoquinoline (15b): 89% yield; mp 162–164 °C (benzene); IR 1626, 1606 1576, 1519, 1502 cm⁻¹; ¹H NMR (270 MHz) δ 2.66 (t, J = 7.6 Hz, 2H), 3.71 (t, J = 7.6 Hz, 2H), 3.83 (s, 3H), 3.89 (s, 3H), 4.09 (s, 2H), 6.02 (s, 2H), 6.67, (s, 1H), 6.93 (s, 1H), 6.66, 6.77 (AB type, J = 8.2 Hz, each 1H). Anal. Calcd for C₁₉H₁₈NO₄Br: C, 56.45; H, 4.49; N, 3.48; Br, 19.77. Found: C, 56.39; H, 4.46; N, 3.33; Br; 19.72.

1-(2-Bromo-3,4-dimethoxybenzyl)-6,7-(methylenedioxy)-3,4-dihydroisoquinoline (15c): 89% yield; mp 154–157 °C (benzene); IR 1643, 1604, 1504, 1492 cm⁻¹; ¹H NMR (270 MHz) δ 2.64 (t, J=7.6 Hz, 2H), 3.67 (t, J=7.6 Hz, 2H), 3.83 (s, 3H), 3.87 (s, 3H,), 4.07 (s, 2H), 5.94 (s, 2H), 6.66, (s, 1H), 6.91 (s, 1H), 6.77, 6.91 (AB type, J=8.4 Hz, each 1H). Anal. Calcd for $C_{19}H_{18}NO_4Br:$ C, 56.45; H, 4.49; N, 3.48; Br, 19.77. Found: C, 56.51; H, 4.42; N, 3.33; Br; 19.89.

1-[2-Bromo-3,4-(methylenedioxy)benzyl]-6,7-(methylenedioxy)-3,4-dihydroisoquinoline (15d): 83% yield; mp 171–175 °C (MeOH); IR 1640, 1615, 1604, 1503 cm⁻¹; ¹H NMR (270 MHz) δ 2.63 (t, J = 7.6 Hz, 2H), 3.66 (t, J = 7.6 Hz, 2H), 4.01 (s, 2H), 5.95 (s, 2H), 6.03 (s, 2H), 6.67 (s, 1H), 6.66, 6.70 (AB type, J = 8.3 Hz, each 1H), 6.90 (s, 1H). Anal. Calcd for C₁₈H₁₄NO₄Br: C, 55.69; H, 3.63; N, 3.61; Br, 20.58. Found: C, 55.56; H, 3.60; N, 3.72; Br; 20.81.

1-(2-Bromo-4,5-dimethoxybenzyl)-6,7-dimethoxy-3,4dihydroisoquinoline (15e): 89% yield from **14e** by the reported method;⁵³ a colorless oil [lit.⁵³ mp 192–193 °C (oxalate);^{38e} 232–234 °C (HCl salt);^{48b} 224–225 °C (HCl salt)]; IR (neat) 1645, 1625, 1607, 1561, 1508 cm⁻¹; ¹H NMR (270 MHz) δ 2.73 (t, J = 7.3 Hz, 2H), 3.62 (partly hiding t, J = 7.6 Hz, 2H), 3.74 (s, 3H), 3.84 (s, 6H), 3.87 (s, 3H), 4.11 (s, 2H), 6.66, 6.87, 7.00, 7.04 (each s, each 1H). This was subjected to ¹O₂ oxidation without further purification.

1-[2-Bromo-4,5-(methylenedioxy)benzyl]-6,7-(methylenedioxy)-3,4-dihydroisoquinoline (15f): 89% yield from **14f**;⁵⁴ mp 120–126 °C (benzene–Et₂O); IR (neat) 1660, 1616, 1598, 1504 cm⁻¹; ¹H NMR (270 Hz) δ 2.66 (t, J = 7.6 Hz, 2H), 3.70 (t, J = 7.6 Hz, 2H), 4.05, 5.92, 5.96 (each s, each 2H), 6.67, 6.71, 6.93, 7.03 (each s, each 1H). Anal. Calcd for C₁₈H₁₄-NO₄Br: C, 55.69; H, 3.63; N, 3.61; Br, 20.58. Found: C, 55.47; H, 3.63; N, 3.61; Br; 20.79.

1-(2-Bromo-3,4-dimethoxybenzoyl)-6,7-dimethoxy-3,4dihydroisoquinoline (16a). General Procedure. Dihydroisoquinoline 15a (2.750 g) was dissolved in CH₂Cl₂ (250 mL) containing MeOH (7.5 mL) and methylene blue (7.5 mg) in a Pyrex test tube (25 mm \times 250 mm) equipped with a sintered glass bubbler and was cooled with a stream of cold water on the side of the tube. Oxygen gas was introduced through the bubbler to the mixture, which was then irradiated with a 100-W tungsten lamp at 15 $^\circ \mathrm{C}$ for 30 min, monitoring with TLC on silica gel with 5% MeOH–CH₂Cl₂. The mixture was treated with powdered activated charcoal (200 mg) and was then filtered through a thin pad of powdered MgSO₄. The filtrate was concentrated to give crude 16a as a solid (2.943 g, ca. 100%), mp 120-125 °C. Recrystallization from benzene-Et₂O gave an analytical sample (2.708 g, 92%), mp 124–126 °C; $R_f 0.6$ with 5% MeOH–CH₂Cl₂; IR 1653, 1623, 1606, 1582, 1515 cm⁻¹; ¹H NMR (270 Hz) δ 2.75 (t, J = 7.7 Hz, 2H), 3.84 (t, J = 7.7 Hz, 2H), 3.86, 3.88, 3.93, 3.94 (each s, each 3H), 6.74, 7.22 (s, each 1H), 6.96, 7.48 (AB type, J = 8.5 Hz, each 1H). Anal. Calcd for C₂₀H₂₀NO₅Br: C, 55.31; H, 4.64; N, 3.24; Br, 18.40. Found: C, 55.19; H, 4.59; N, 3.26; Br, 18.18.

1-[2-Bromo-3,4-(methylenedioxy)benzoyl]-6,7-dimethoxy-3,4-dihydroisoquinoline (16b): 83% yield; mp 161–163 °C (benzene); IR 1672, 1605, 1568, 1516, 1466 cm⁻¹; ¹H NMR (270 Hz) δ 2.76 (t, J = 7.8 Hz, 2H), 3.87 (t, J = 8.0 Hz, 2H), 3.87 (s, 3H), 3.94 (s, 3H), 6.12 (s, 2H), 6.73 (s, 1H), 7.16 (s, 1H), 6.84, 7.34 (AB type, J = 8.5 Hz, each 1H). Anal. Calcd for C₁₉H₁₆NO₅Br: C, 54.56; H, 3.86; N, 3.35; Br, 19.10. Found: C, 54.43; H, 3.81; N, 3.53; Br, 19.03.

1-(2-Bromo-3,4-dimethoxybenzoyl)-6,7-(methylenedioxy)-3,4-dihydroisoquinoline (16c): 89% yield; mp 126– 127 °C (MeOH–Et₂O); IR 1674, 1655, 1585, 1501, 1486 cm⁻¹; ¹H NMR (270 MHz) δ 2.70 (t, J = 7.8 Hz, 2H), 3.79 (t, J = 7.6 Hz, 2H), 3.85 (s, 3H), 3.92 (s, 3H), 5.99 (s, 2H), 6.71 (s, 1H), 7.15 (s, 1H), 6.96, 7.46 (AB type, J = 8.8 Hz, each 1H). Anal. Calcd for C₁₉H₁₆NO₅Br: C, 54.56; H, 3.86; N, 3.35; Br, 19.10. Found: C, 54.54; H, 3.95; N, 3.20; Br, 18.89.

1-[2-Bromo-3,4-(methylenedioxy)benzoyl]-6,7-(methylenedioxy)-3,4-dihydroisoquinoline (16d): 87% yield; mp 165–167 °C (benzene–Et₂O); IR 1675, 1662, 1603, 1589, 1503

⁽⁵³⁾ Cava, M. P.; Mitchel, M. J.; Havlicek, S. C.; Lindert, A.; Spangler, R. J. I. *J. Org. Chem.* **1970**, *35*, 1175–1179.

⁽⁵⁴⁾ Cava, M. P.; Stern, P.; Wakisaka, K. Tetrahedron 1973, 29, 2245-2249.

cm⁻¹; ¹H NMR (270 MHz) δ 2.72 (t, J = 7.8 Hz, 2H), 3.82 (t, J = 7.8 Hz, 2H), 6.00 (s, 2H), 6.11 (s, 2H), 6.71 (s, 1H), 7.09 (s, 1H), 6.84, 7.33 (AB type, J = 8.4 Hz, each 1H). Anal. Calcd for C₁₈H₁₂NO₅Br: C, 53.75; H, 3.01; N, 3.48; Br, 19.87. Found: C, 53.77; H, 2.82; N, 3.51; Br, 19.86.

1-(2-Bromo-4,5-dimethoxybenzoyl)-6,7-dimethoxy-3,4dihydroisoquinoline (16e): 87% yield: mp 184–186 °C (MeOH); IR 1671, 1595, 1570, 1509 cm⁻¹; ¹H NMR (270 Hz) δ 2.77 (t, J = 7.7 Hz, 2H), 3.82 (partly hiding t, J = 7.7 Hz, 2H), 3.87 (s, 3H), 3.92 (s, 6H), 3.94 (s, 3H), 6.74, 7.03, 7.15, 7.28 (each s, each 1H). Anal. Calcd for C₂₀H₂₀NO₅Br: C, 55.31; H, 4.64; N, 3.24; Br, 18.40. Found: C, 55.45; H, 4.50; N, 3.06; Br, 18.37.

1-[2-Bromo-4,5-(methylenedioxy)benzoyl]-6,7-(methylenedioxy)-3,4-dihydroisoquinoline (16f): 78% yield: mp 176–179 °C (MeOH–Et₂O); IR 1677, 1651, 1587, 1501 cm⁻¹; ¹H NMR (270 Hz) δ 2.71 (t, J = 7.9 Hz, 2H), 3.82 (t, J = 7.9 Hz, 2H), 6.00 (s, 2H), 6.05 (s, 2H), 6.71, 7.01, 7.13, 7.15 (each s, each 1H). Anal. Calcd. for C₁₈H₁₂NO₅Br: C, 53.75; H, 3.01; N, 3.48; Br, 19.87. Found: C, 53.90; H, 3.22; N, 3.20; Br, 19.72.

1-(2-Bromo-3,4-dimethoxybenzoyl)-6,7-dimethoxy-3,4dihydroisoquinoline Methiodide (17a). General Procedure. The crude dihydroisoquinoline 16a (3.680 g, 6.4 mmol) was refluxed in CH₃CN (25 mL) containing CH₃I (3.5 mL) for 75 min. Evaporation of the solvent and excess CH₃I, followed by recrystallization of the resultant solid from MeOH–Et₂O, gave methiodide 17a as yellow crystals (4.02 g, 82%): mp 142– 144 °C; IR 1638, 1601, 1572, 1560, 1525 cm⁻¹; ¹H NMR (270 MHz) δ 3.71 (s, 3H), 3.87, 3.90, 4.00, 4.02 (each s, each 3H), 3.80–4.20, 4.25–4.65 (br. m, each 2H), 6.66 (s, 1H), 6.91 (s, 1H), 7.25, 8.43 (AB type, J = 8.8 Hz, each 1H). Anal. Calcd for C₂₁H₂₃NO₅BrI + H₂O: C, 42.45; H, 4.23; N, 2.36; I + Br, 34.81. Found: C, 42.37; H, 4.05; N, 2.36; I + Br, 34.53.

1-[2-Bromo-3,4-dimethoxybenzoyl]-6,7-(methylenedioxy)-3,4-dihydroisoquinoline methiodide (17b): 85% yield; mp 197–198 °C (MeOH); IR 1600, 1648, 1617, 1598 cm⁻¹; ¹H NMR (270 MHz) δ 3.73 (s, 3H), 3.86, 4.03 (s, each 3H), 6.22 (s, 2H), 6.65 (s, 1H), 6.95 (s, 1H), 7.16, 8.25 (AB type, J = 8.4Hz, each 1H). Anal. Calcd for C₂₀H₁₉NO₅BrI: C, 42.88; H, 3.42; N, 2.50; I + Br, 36.91. Found: C, 42.80; H, 3.55; N, 2.36; I + Br, 36.72.

1-[2-Bromo-3,4-(methylenedioxy)benzoyl]-6,7-dimethoxy-3,4-dihydroisoquinoline methiodide (17c): 85% yield; mp 163–164 °C (MeOH); IR 1648, 1617, 1598, 1574, 1506, 1491 cm⁻¹; ¹H NMR (270 MHz) δ 3.84 (s, 3H), 3.90 (s, 3H), 4.01 (s, 3H), 6.66 (s, 1H), 6.90 (s, 1H), 7.25, 8.41 (AB type, J= 8.9 Hz, each 1H). Anal. Calcd for C₂₀H₁₉NO₅BrI: C, 42.88; H, 3.42; N, 2.50; I + Br, 36.91. Found: C, 42.80; H, 3.55; N, 2.36; I + Br, 36.93.

1-[2-Bromo-3,4-(methylenedioxy)benzoyl]-6,7-(methylenedioxy)-3,4-dihydroisoquinoline methiodide (17d): 89% yield; mp 231–232 °C (benzene–Et₂O); IR 1672, 1650, 1610, 1595, 1498 cm⁻¹; ¹H NMR (270 MHz) δ 3.84 (s, 3H), 6.12 (s, 2H), 6.22 (s, 2H), 6.68 (s, 1H), 6.88 (s, 1H), 7.17, 8.29 (AB type, J = 8.6 Hz, each 1H). Anal. Calcd for C₁₉H₁₅NO₅BrI: C, 41.94; H, 2.78; N, 2.57; I + Br, 38.00. Found: C, 41.86; H, 2.65; N, 2.60; I + Br, 37.73.

1-(2-Bromo-4,5-dimethoxybenzoyl)-6,7-dimethoxy-3,4-dihydroisoquinoline methiodide (17e): 89% yield; mp 198–200 °C (MeOH); IR 1662, 1629, 1585, 1559, 1525, 1510 cm⁻¹; ¹H NMR (270 MHz) δ 3.67, 3.82, 4.01, 4.02, 4.05 (each s, each 3H), 7.61, 7.15, 7.04, 6.53 (each s, each 1H). Anal. Calcd for C₂₁H₂₃NO₅BrI: C, 43.77; H, 4.02; N, 2.43; I + Br, 35.89. Found: C, 43.57; H, 4.08; N, 2.34; I + Br, 35.92.

1-[2-Bromo-4,5-(methylenedioxy)benzoyl]-6,7-(methylenedioxy)-3,4-dihydroisoquinoline methiodide (17f): 86% yield; mp 202–205 °C (MeOH); IR 1646, 1610 cm⁻¹; ¹H NMR (270 MHz) δ 3.66, 4.54 (each br s, each 2H), 3.84 (s, 3H), 6.13 (s, 2H), 6.20 (s, 2H), 6.56, 6.91, 7.17, 7.76 (each s, each 1H). Anal. Calcd for C₁₉H₁₅NO₅BrI: C, 41.94; H, 2.78; N, 2.57; I + Br, 38.01. Found: C, 41.84; H, 2.85; N, 2.85; I + Br, 37.92.

1-(2-Bromo-3,4-dimethoxybenzoyl)-6,7-dimethoxy-3,4dihydroisoquinoline Benzyl Bromide (17g). General Procedure. A mixture of dihydroisoquinoline 16a (868 mg, 2.0 mmol) and benzyl bromide (359 mg, 2.1 mL, 0.25 mmol) in CH₃CN (8 mL) was refluxed for 2.5 h and was then evaporated. A yellow glassy residue was crystallized from MeOH–Et₂O to give benzyl bromide **17g** as yellow crystals (1.10 g, 91%): mp 153–154 °C. IR 1666, 1617, 1598, 1573, 1553 cm⁻¹; ¹H NMR (270 MHz) δ 3.74, 3.90, 3.99, 4.00 (each s, each 3H), 6.75 (s, 1H), 6.85 (s, 1H), 7.31(AB type, *J* = 8.8 Hz, 1H), 7.40–7.46 (m, 3H), 7.53–7.58 (m, 2H), 8.73 (AB type, *J* = 8.8 Hz, 1H), Anal. Calcd for C₂₇H₂₇NO₅Br₂ + H₂O: C, 52.03; H, 4.69; N, 2.25; Br, 25.64. Found: C, 52.06; H, 4.64; N, 2.15; Br, 25.72.

1-[2-Bromo-3,4-(methylenedioxy)benzoyl]-6,7-(methylenedioxy)-3,4-dihydroisoquinoline benzyl bromide (17h): 89% yield from **16d**; mp 162–164 °C (Et₂O); IR 1663, 1640, 1608, 1591 cm⁻¹; ¹H NMR (400 MHz) δ 2.96, 3.61, 4.31, 4.83, 5.06, 5.86 (each br s, each 1H), 6.12 (s, 2H), 6.23 (s, 2H), 6.74 (s, 1H), 6.83 (s, 1H), 7.20 (AB type, J = 8.3 Hz, 1H), 7.40–7.45 (m, 3H), 7.49–7.55 (m, 2H), 8.57 (AB type, J = 8.3 Hz, 1H). Anal. Calcd for C₂₅H₁₉NO₅Br₂: C, 52.38; H, 3.34; N, 2.44; Br, 27.88. Found: C, 52.52; H, 3.33; N, 2.42; Br, 28.01.

1-(2-Bromo-3,4-dimethoxybenzoyl)-6,7-dimethoxy-3,4dihydroisoquinoline Propyl Iodide (17i). A mixture of **16a** (218 mg, 0.5 mmol) and propyl iodide (0.2 mL, 1.8 mmol) in CH₃CN (1 mL) was refluxed for 4.5 h. Evaporation of the solvent and crystallization of the residue from MeOH gave benzyl bromide **17i** as a yellow crystalline solid (288 mg, 95%): mp 95–97 °C; IR 1671, 1628, 1602, 1574, 1555, 1522 cm⁻¹; ¹H NMR (270 MHz) δ 0.99 (t, J = 6.6 Hz, 3H), 1.93 (six, J = 6.6 Hz, 2H), 3.71 (s, 3H), 3.86 (t, J = 6.6 Hz, 2H), 3.99, 4.02 (each s, each 3H), 6.66 (s, 1H), 6.92 (s, 1H), 7.24, 8.42 (AB type, J = 8.9 Hz, each 1H). Anal. Calcd for C₂₃H₂₇-NO₅BrI: C, 45.72; H, 4.50; N, 2.32; Br + I, 34.22. Found: C, 45.52; H, 4.64; N, 2.31; Br + I, 33.97.

General Procedure for Preparation of Erythro-Amino Alcohols 19a-j. erythro-1-(2-Bromo-3,4-dimethoxy-α-hydroxybenzyl)-2-methyl-6,7-dimethoxy-1,2,3,4-tetrahy droisoguinoline (19a). Method A (in MeOH). To a stirred solution of 17a (1.728 g, 3 mmol) in MeOH (75 mL) in water bath was added NaBH $_4$ (567 mg, 15 mmol) in portions for 5 min. After the mixture was continuously stirred at room temperature for 2 h, MeOH was evaporated. The residue was dissolved in water (30 mL) and CH₂Cl₂ (30 mL). The water layer was further extracted with CH_2Cl_2 (10 mL \times 2). The combined CH_2Cl_2 layers were washed with water (10 mL \times 2), dried (Na₂SO₄), and then evaporated. The resultant solid (1.400 g) was found to be a 97:3 mixture of amino-alcohols 19a and **20a** by ¹H NMR analysis and treated with benzene-Et₂O to give 19a (1.115 mg, 83%) as colorless crystals: mp 146-148 °C; IR 3302, 3315, 1615, 1591, 1518, 1482 cm⁻¹; ¹H NMR (270 MHz) & 2.52-2.66 (m, 2H), 2.59 (s, 1H), 2.75 (s, 3H), 2.95 3.16 (m, 3H), 3.23 (s, 3H), 3.82, 3.83, 3.86 (each s, each 3H), 4.06 (d, J = 2.9 Hz, 1H,), 5.33 (d, J = 2.9 Hz, 1H), 5.26 (s, 1H), 6.65 (s, 1H), 6.67, 6.72 (AB type, J = 8.8 Hz, each 1H). Anal. Calcd for C₂₁H₂₆NO₅Br: C, 55.76; H, 5.79; N, 3.10; Br, 17.66. Found: C, 55.59; H, 5.77; N, 3.03; Br, 17.54.

Method B (in AcOH). NaBH₄ (2.3 g, 10 mmol) was added to a stirred solution of **17a** (576 mg, 1 mmol) in AcOH (10 mL) in water bath in portions for 1.5 h. After being stirred for 30 min, the mixture was treated with water (50 mL) and CH₂Cl₂ (25 × mL). The combined CH₂Cl₂ layers were washed with 2 N NaOH (5 mL) and water (10 mL × 2), dried (Na₂SO₄), and then concentrated. The oily residue (470 mg) showed no signals owing to **20a** in its ¹H NMR spectrum and was treated with benzene–Et₂O to give **19a** (398 mg, 89%), mp 146–148 °C.

Other solvent systems did not show significant selectivities [MeOH–THF (1:2), 46:54 for **19a:20a**; MeOH–DMSO (1:1), 50:50; DMF, 50:50; i-PrOH, 60:40].

erythro-1-(2-Bromo-3,4-dimethoxy-α-hydroxybenzyl)-2-methyl-6,7-(methylenedioxy)-1,2,3,4-tetrahydroisoquinoline (19b): 92% yield (method B), mp 148–150 °C (MeOH– Et₂O); IR 3550, 1611, 1513 cm⁻¹; ¹H NMR (270 MHz) δ 2.55– 2.70 (m, 2H), 2.74 (s, 3H), 2.90–3.20 (m, 2H), 3.35 (s, 3H), 3.83 (s, 3H), 4.00 (d, J = 3.0 Hz, 1H), 5.29 (d, J = 3.0 Hz, 1H), 5.40 (s, 1H), 6.04 (s, 2H), 6.57 (s, 1H), 6.51, 6.63 (AB type, J = 8.2 Hz, each 1H). Anal. Calcd for C₂₀H₂₂NO₅Br: C, 55.06; H, 5.08; N, 3.21; Br, 18.31. Found: C, 54.85; H, 4.94; N, 3.19; Br, 18.38. *erythro*-1-[2-Bromo-3,4-(methylenedioxy)-α-hydroxybenzyl]-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline (19c): 92% yield (method A); mp 146–147 °C (MeOH–Et₂O); IR 3100, 1592, 1503 cm⁻¹; ¹H NMR (270 MHz) δ 2.50–2.63 (m, 2H), 2.72 (s, 3H), 2.88–3.16 (m, 2H), 3.86 (s, 3H), 3.89 (s, 3H), 3.97 (d, J= 3.3 Hz, 1H), 5.30 (d, J= 3.3 Hz, 1H), 5.29 (s, 1H), 5.76, 5.80 (each d, J= 1.5 Hz, each 1H), 6.54 (s, 1H), 6.72, 6.77 (AB type J= 8.7 Hz, each 1H). Anal. Calcd for C₂₀H₂₂NO₅Br: C, 55.06; H, 5.08; N, 3.21; Br, 18.31. Found: C, 54.97; H, 5.03; N, 3.20; Br, 18.03.

erythro-1-[2-Bromo-3,4-(methylenedioxy)-α-hydroxybenzyl]-2-methyl-6,7-(methylenedioxy)-1,2,3,4-tetrahydroisoquinoline (19d): 80% yield (method B); mp 187–189 °C (benzene–Et₂O); IR 3570, 3080, 1617, 1500, 1489 cm⁻¹; ¹H NMR (270 MHz) δ 2.53–2.62 (m, 2H), 2.72 (s, 3H), 2.92–3.17 (m, 2H), 3.94 (d, J = 3.0 Hz, 1H), 5.26 (d, J = 3.0 Hz, 1H), 5.37 (s, 1H), 5.78, 5.82 (each d, J = 1.3 Hz, each 1H), 6.06, 6.10 (each d, J = 1.5 Hz, each 1H), 6.55 (s, 1H), 6.53, 6.65 (AB type J = 8.3 Hz, each 1H). Anal. Calcd for C₁₉H₁₈NO₅Br: C, 54.30; (H, 4.32; N, 3.33; Br, 19.02. Found: C, 54.12; H, 4.25; N, 3.26; Br, 19.32.

erythro-1-(2-Bromo-4,5-dimethoxy-α-hydroxybenzyl)-2-methyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (19e): 87% yield (method B); mp 141–142 °C (MeOH); IR 3540, 1612, 1600, 1571, 1519, 1499 cm⁻¹; ¹H NMR (270 MHz) δ 2.53–2.66 (m, 2H), 2.75 (s, 3H), 3.96–3.15 (m, 2H), 3.28, 3.57, 3.82, 3.87 (each s, each 3H), 4.00 (d, J = 3.0 Hz, 1H), 5.29 (d, J = 3.0 Hz, 1H), 5.39 (s, 1H), 6.49 (s, 1H), 7.06 (s, 1H). Anal. Calcd for C₂₁H₂₆NO₅Br: C, 55.76; H,5.79; N, 3.10; Br, 17.68. Found: C, 55.60; H, 5.76; N, 3.06; Br, 17.51.

erythro-1-[2-Bromo-4,5-(methylenedioxy)-α-hydroxybenzyl]-2-methyl-6,7-(methylenedioxy)-1,2,3,4-tetrahydroisoquinoline (19f): 92% yield (method B); mp 169–171 °C (MeOH); IR 3584, 1621, 1610, 1503, 1471 cm⁻¹; ¹H NMR (270 MHz) δ 2.51–2.61 (m, 2H), 2.69 (s, 3H,), 2.88–3.13 (m, 2H), 3.96 (d, J = 3.0 Hz, 1H), 5.22 (d, J = 3.0 Hz, 1H), 5.42 (s, 1H), 5.80 (s, 2H), 5.92 (s, 2H), 6.51 (s, 1H), 6.55 (s, 1H), 7.02 (s, 1H). Anal. Calcd for C₁₉H₁₈NO₅Br: C, 54.30; H, 4.32; N, 3.33; Br, 19.02. Found: C, 54.32; H, 4.44; N, 3.22; Br, 19.26.

erythro-2-Benzyl-1-(2-bromo-3,4-dimethoxy-α-hydroxybenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (19g): 88% yield (method B); mp 137–139 °C (benzene–Et₂O); IR 3530, 1609, 1594, 1514 cm⁻¹; ¹H NMR (270 MHz) δ 2.42–2.60 (m, 2H), 2.83–2.98 (m, 1H), 3.13–3.23 (m, 1H), 3.28, 3.82, 3.84, 3.87 (each s, each 3H), 3.79 (d, J = 13.2 Hz, 1H), 4.38 (d, J = 13.2 Hz, 1H), 4.32 (d, J = 3.3 Hz, 1H), 5.37 (s, 1H), 5.42 (d, J= 3.3 Hz, 1H), 6.57 (s, 1H), 6.69, 6.73 (AB type, J = 8.8 Hz, each 1H). Anal. Calcd for C₂₇H₃₀N0₅Br: C, 61.37; H, 5.72; N, 2.65; Br, 15.12. Found: C, 61.55; H, 5.73; N, 2.49; Br, 15.06. Crystallization from MeOH gave colorless crystals containing one molar equiv of MeOH, mp 80–82 °C; ¹H NMR (270 MHz) δ 3.48 (br s, 3H). Anal. Calcd for C₂₇H₃₀N0₅Br·CH₃OH: C, 60.00; H, 6.11; N, 2.50; Br, 14.26. Found: C, 59.83; H, 6.11; N, 2.34; Br, 14.44.

erythreo-2-Benzyl-1-[2-bromo-3,4-(methylenedioxy)-αhydroxybenzyl]-6,7-(methylenedioxy)-1,2,3,4-tetrahydroisoquinoline (19h): 95% yield (method B); mp 77–79 °C (benzene-hexane); IR 3530, 1594, 1514, 1486 cm⁻¹; ¹H NMR (270 MHz) δ 2.47–2.63 (m, 2H), 2.74–2.92, 3.12–3.30 (m, each 1H), 3.78, 4.23 (AB type, J = 13.7 Hz, each 1H), 5.33 (d, J =3.3 Hz, 1H), 5.57 (s, 1H), 5.80, 5.83 (each d, J = 1.5 Hz, each 1H), 6.06, 6.10 (each d, J = 1.2 Hz, each 1H), 6.17 (s, 1H), 6.55, 6.65 (AB type, J = 8.3 Hz, each 1H), 7.26–7.41 (m, 5H). Anal. Calcd for C₂₅H₂₂NO₅Br: C, 60.50; H, 4.47; N, 2.82; Br, 16.10. Found: C, 60.46; H, 4.49; N, 2.62; Br, 16.38.

erythro-1-(2-Bromo-3,4-dimethoxy-α-hydroxybenzyl)-6,7-dimethoxy-2-propyl-1,2,3,4-tetrahydroisoquinoline (19i): 85% yield (method A); mp 95–97 °C (EtOH–hexane); IR 3390, 1610, 1594, 1517, 1488 cm⁻¹; ¹H NMR (270 MHz) δ 1.01 (t, J = 7.4 Hz, 3H), 1.65 (six, J = 7.4 Hz, 2H), 2.43–2.65 (m, 2H), 2.56–3.06 (m, 4H), 3.24, 3.82, 3.83, 3.87 (each s, each 3H), 4.16, 5.24 (d, J = 3.2 Hz, each 1H), 6.57 (s, each 1H), 6.64, 6.70 (AB type, J = 8.7 Hz, each 1H). Anal. Calcd for $C_{23}H_{30}NO_5Br$: C, 57.51; H, 6.29; N, 2.92; Br, 16.63. Found: C, 57.51; H, 6.30; N, 2.78; Br, 16.86. *erythro*-1-(2-Bromo-3,4-dimethoxy-α-hydroxybenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (19j): 80% yield (method A from 16a); mp 153–155 °C (MeOH–Et₂O); IR 3302, 1607, 1590, 1512, 1485 cm⁻¹; ¹H NMR (400 MHz) ∂ 2.58–2.65 (m, 1H), 2.85–3.00 (m, 2H), 3.30–3.38 (m, 1H), 3.41, 3.84, 3.86, 3.87 (s, each 3H), 4.64, 5.12 (AB type J = 3.9 Hz, each 1H), 5.76, 6.58 (each s, each 1H), 6.83, 7.02 (AB type J = 8.3 Hz, each 1H). Anal. Calcd for C₂₀H₂₄NO₅Br: C, 54.81; H, 5.52; N, 3.20; Br, 18.23. Found: C, 54.66; H, 5.52; N, 3.18; Br, 18.09.

Reduction of Methiodide 17a by Catalytic Hydrogenation in the Presence of Adams Catalyst. General Procedure for Preparation of Ketones 18a and 18d. A stirred solution of 17a (288 mg, 0.5 mmol) in MeOH (20 mL) was hydrogenated in the presence of PtO_2 (11.4 mg, 0.05 mmol) at 17 °C. Consumption of hydrogen ceased (16.0 mL, 1.04 M) 3 h later. The catalyst and solvent were removed, and the residue was dissolved in CH_2Cl_2 (20 mL), washed with water (20 mL), and dried (Na₂SO₄). Evaporation of the solvent gave the crude ketone 18a (206 mg, 92%) as a colorless oil: IR (neat) 1674, 1608, 1585, 1520 cm⁻¹; ¹H NMR (270 MHz) δ 2.44 (s, 3H), 2.55-3.30 (m. 4H), 4.42 (s, 1H), 6.59, 6.65 (s, each 1H), 6.68, 7.21 (AB type, J = 8.4 Hz, each 1H); MS m/z (rel int) 451 (M⁺, 0.5), 449 (M⁺, 0.9), 206 { $[M - COC_6H_2(OCH_3)_2Br]^+$, 100}; HRMS m/z 449.0827 (calcd for C₂₁H₂₄NO₅Br: 449.0838). This oil was gradually decomposed in air to N-methylcorydaldine and 2-bromo-3,4-dimethoxybenzoic acid, as described below

1-[2-Bromo-3,4-(methylenedioxy)benzoyl]-6,7-(methylenedioxy)-2-methyl-1,2,3,4-tetrahydroisoquinoline (18d): 90% yield from **17d**; mp 149–150 °C (MeOH–Et₂O); IR 1679, 1604, 1597, 1503 cm⁻¹; ¹H NMR (90 MHz) δ 2.40 (s, 3H), 2.50–3.20 (m, 4H), 4.35 (s, 1H), 5.89 (s, 2H), 6.05 (s, 2H), 6.59 (s, 1H), 6.61 (s, 1H), 6.59, 7.21 (AB type, J = 8.1 Hz, each 1H). Anal. Calcd for C₁₉H₁₆NO₅Br: C, 54.56; H, 3.86; N, 3.35; Br, 19.10. Found: C, 54.50; H, 3.76; N, 3.22; Br, 19.30.

Treatment of Methiodides 17a and 17d with 1 Mol Equiv of NaBH₄ in MeOH. From 17a: To a stirred solution of **17a** (288 mg, 0.5 mmol) in MeOH (16 mL) was added NaBH₄ (19 mg, 0.5 mmol). After 2 h, the mixture was worked up in the same manner as those noted above for reduction of **17a** using excess NaBH₄. The crude products (225 mg) were found to comprise essentially **18a** and **19a** in a 70:30 ratio by ¹H NMR analysis. Attempts to isolate **18a** by preparative TLC were unsuccessful.

From 17d: A similar treatment of **17d** (544 mg, 1 mmol), followed by two crystallizations of the crude reaction products (400 mg) from MeOH– Et_2O , gave ketone **18d** (233 mg, 56%), mp 149–150 °C.

NaBH₄ **Reduction of 18a.** 1-Benzoyltetrahydroisoquinoline **18a** (30 mg, 0.067 mmol) was treated with NaBH₄ (9 mg, 0.237 mmol) in method A. The crude product, a solid (30 mg), was found to be essentially *erythro*-amino alcohol (**19a**) in a 16:1 mixture of **19a** and **20a**. A fractional crystallization from benzene-hexane gave **19a** (27 mg, 90%) as colorless crystals, mp 146–148 °C.

NaBH₄ Reduction of 18d. 1-Benzoyltetrahydroisoquinoline **18d** (125 mg, 0.3 mmol) was treated with NaBH₄ (67 mg, 1.5 mmol) in method B. Recrystallization of the product (138 mg) from benzene–Et₂O gave *erythro*-amino alcohol **19d** (101 mg, 80%), mp 187–189 °C.

Treatment of 18a with Oxygen. Oxygen gas was introduced to a solution of the aforementioned crude ketone **18a** (30 mg) in MeOH for 1 h. After evaporation of MeOH, the residue was shaken with a mixture of CH_2Cl_2 (5 mL) and 0.5 N NaOH (4 mL). The CH_2Cl_2 layer was washed with water (5 mL), dried over anhydrous Na₂SO₄, and evaporated to dryness. The crude product was crystallized from petroleum ether to give *N*-methylcorydaldine (12 mg, 81%), mp 126–127 °C (lit.^{30a} mp 123–124 °C;^{27b,30b} 125–126 °C). The alkaline layer was once washed with CH_2Cl_2 (5 mL) and then acidified with 0.5 N HCl solution (2 mL). The resultant solid was collected and recrystallized from EtOH to give 2-bromo-3,4-dimethoxybenzoic acid (13 mg, 75%) as colorless crystals: mp 201–203 °C; IR 1700, 1694, 1665, 1588, 1563, 1491 cm⁻¹; ¹H NMR (90 MHz,

CDCl₃–DMSO- d_6) δ 3.84, 3.92 (each s, each 3H), 4.63 (br s, 1H), 6.87, 7.71 (AB type, J = 8.8 Hz, each 1H). Anal. Calcd for C₉H₉₀O₄Br: C, 41.40; H, 3.48; Br, 30.61. Found: C, 41.17; H, 3.52; Br, 30.40.

This acid was obtained in 76% yield by treatment of 2-bromo-3,4-dimethoxybenzaldehyde²⁶ (37 mg, 0.15 mmol) with Jones reagent (0.5 mL) in acetone (10 mL) at room temperature for 80 min.

Treatment of 19a with CuCl₂. A mixture of 19a (23 mg, 0.05 mmol) and CuCl₂ (13.4 mg, 0.1 mmol) in toluene (1 mL) was heated in a test tube with shaking in an oil bath at 140 °C for 2 min. During this time, the color of the solution turned to green and then yellow, and it finally became colorless. The toluene layer, which was separated from the insoluble materials, was washed once with water (2 mL) and dried (Na₂SO₄). Toluene was evaporated to give 2-bromo-3,4-dimethoxybenzaldehyde as a crystalline solid (10 mg, 81%). The insoluble residue was dissolved in MeOH (4 mL), and then NaBH₄ (10 mg, 0.26 mmol) was added. After the mixture was stirred at room temperature for 2 h, MeOH was evaporated. The residue was extracted with CH_2Cl_2 (3 mL) and water (5 mL). The organic layer was washed with water (5 mL), dried (Na₂SO₄), and concentrated to give an oil (10 mg, 93%), which was identical in all respects with an authentic sample of 6,7dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline.³¹

LiAlH₄ Reduction of Methiodide 17a. General Procedure. To a stirred solution of 17a (288 mg, 0.5 mmol) in dry THF (50 mL) was added LiAlH₄ (40 mg, 1.0 mmol) at once. After 5 min, THF (5 mL) containing 1 mL of water was added to the stirred reaction mixture, which was then allowed to be stirred for 30 min. Precipitates were removed by suction filtration, and the solvent was evaporated. The residue was dissolved in CH_2Cl_2 (15 mL) and washed with water (10 mL). The CH_2Cl_2 layer was dried (Na₂SO₄) and concentrated to give an oil (233 mg), which comprised *erythro*- and *threo*-amino alcohols **19a** and **20a** (29:71) (>90%).

This was treated with acetic anhydride (1 mL) and pyridine (0.2 mL) at room temperature overnight, and then EtOH (5 mL) was added to decompose excess acetic anhydride. The solvents were removed by azeotropic distillation using benzene. The residue was dissolved in benzene (10 mL), washed with 5% NaHCO₃ solution (2 mL) and water (10 mL \times 2), and dried (Na₂SO₄). Evaporation of the solvent gave an oil (271 mg), which was subjected to preparative TLC on silica gel (5% MeOH-CH₂Cl₂). A band with $R_f 0.7$ gave acetate of **19a** (63 mg) [IR (neat) 1745, 1683, 1596, 1518, 1490 cm⁻¹: ¹H NMR (270 MHz) & 2.02, 2.60, 3.51, 3.85, 3.86, 3.87 (each s, each 3H), 3.96 (d, J = 4.4 Hz, 1H), 6.37 (d, J = 4.4 Hz, 1H), 5.82 (s, 1H), 6.60 (s, 1H), 6.72, 6.78 (AB type, J = 8.8 Hz, each 1H). MS m/z (rel int) 494, 492 [each (M – H)⁺, each 0.04], 436, 434 [each (M - OAc)⁺, each 0.80], 435, 433 [each (M - HOAc)⁺, 2.4], 420, 418 [each (M – HOAc – CH₃)⁺, 1.2], 206 [(M – benzoyl group)⁺, 100]. HRMS m/z 494.1001 (calcd for C₂₃H₂₇O₆NBr; 494.0974]. A less mobile band with $R_f 0.5$ gave acetate of **20a** (127 mg) [IR (neat) 1738, 1681, 1612, 1596, 1518, 1491 cm⁻¹: ¹H NMR (270 MHz) & 2.06, 2.40, 3.55, 3.74, 3.83, 3.86 (each s, each 3H), 3.83 (partially hiding d, J = 6.6 Hz, 1H), 6.36 (d, J = 6.6 Hz, 1H), 6.04 (s, 1H), 6.53 (s, 1H), 6.85, 7.06 (AB type, *J* = 8.8 Hz, each 1H); EI-MS *m*/*z* (rel int) 494, 492 [each (M – H)⁺, each 0.02), 436, 434 [each (M - OAc)⁺, each 0.3], 206 [(M benzoyl group)⁺, 100]; HRMS m/z 492.1001 (calcd for C₂₃H₂₇O₆NBr: 492.1021). Acetate of 19a was dissolved in 5% KOH-MeOH (2 mL) and was heated to 50 °C for 5 min. MeOH was then evaporated, and the residue was treated with water (5 mL) and CH_2Cl_2 (10 mL \times 3). The extracts were washed with water (10 mL), dried (Na₂SO₄), and evaporated. The resultant crude oily product (49 mg) was crystallized from benzene-Et₂O to give 19a (41 mg, 16%), mp 146-148 °C. A similar treatment of acetate of **20a** afforded the crude alcohol (101 mg), which was crystallized from benzene-Et₂O to give 20a (91 mg, 36%); mp 133-135 °C; IR 3380, 1609, 1596, 1516 cm⁻¹; ¹H NMR (270 MHz) & 2.51 (s, 3H), 2.58–2.63 (m, 1H), 2.83-3.02 (m, 3H), 3.37 (s, 3H), 3.43 (d, J = 8.4 Hz, 1H), 3.75, 3.82, 3.89 (each s, each 3H), 4.99 (d, J = 8.4 Hz, 1H), 5.59 (s, 1H), 6.55 (s, 1H), 6.99, 7.41 (AB type, J = 8.8 Hz, each 1H).

Anal. Calcd for C₂₁H₂₆NO₅Br: C, 55.76; H, 5.79; N, 3.10; Br, 17.66. Found: C, 55.78; H, 5.69; N, 2.98; Br, 17.54.

LiAlH₄ **Reduction of 17b: 19b** and **20b** (33:67) > 90% yield; ¹H NMR spectrum (270 MHz) for *threo*-amino alcohol **20b**; δ 2.56 (s, 3H), 2.48–2.60 (m, 1H), 2.84–3.04 (m, 2H), 3.33–3.51 (m, 1H), 3.42 (d, J = 8.3 Hz, 1H), 3.42 (s, 3H), 3.83 (s, 3H), 4.91 (d, J = 8.3 Hz, 1H), 5.60 (s, 1H), 6.00 (dd, J = 8.9, 1.2 Hz, 2H), 6.56 (s, 1H), 6.88, 7.20 (AB type, J = 8.3 Hz, each 1H).

LiAlH₄ **Reduction of 17c: 19c** and **20c** (17:83) >90% yield; ¹H NMR spectrum (270 MHz) for *threo*-amino alcohol **20c**; δ 2.47 (s, 3H), 2.50–2.63 (m, 1H), 2.76–2.99 (m, 2H), 3.35–3.47 (m, 1H), 3.37 (d, J = 8.6 Hz, 1H), 3.77 (s, 3H), 3.91 (s, 3H), 4.96 (d, J = 8.6 Hz, 1H), 5.56 (s, 1H), 5.79 (dd, J = 4.0, 1.3 Hz, 2H), 6.54 (s, 1H), 6.98, 7.40 (AB type, J = 8.6 Hz, each 1H).

LiAlH₄ **Reduction of 17d: 19d** and **20d** (25:75) >90% yield; ¹H NMR spectrum (270 MHz) for *threo*-amino alcohol **20d**; δ 2.47 (s, 3H), 2.52–2.65 (m, 1H), 2.76–2.99 (m, 2H), 2.76–2.99 (m, 2H), 3.31–3.49 (m, 1H), 3.45 (d, J = 8.6 Hz, 1H), 4.84 (d, J = 8.6 Hz, 1H), 5.71 (s, 1H), 5.83 (dd, J = 7.3, 1.3 Hz, 2H), 6.04 (dd, J = 7.6 Hz, 2H), 6.55 (s, 1H), 6.87, 7.15 (AB type J = 8.3 Hz, each 1H).

LiAlH₄ Reduction of 18a. To a stirred solution of **18a** (12 mg, 0.027 mmol) in dry THF (2 mL) was added LiAlH₄ (2 mg, 0.053 mmol) at once in an atmosphere of N₂. After 30 min, workup in the same manner as that noted above for LiAlH₄ reduction of **17a** gave an oil (12 mg), which was found to be a mixture of **19a** and **20a** in a ratio of 28:72.

Reduction of Methiodide 17a with DIBALH. To a stirred solution of methiodide **17a** (28 mg, 0.05 mmol) in dry CH_2Cl_2 (5 mL) was added DIBALH (1.5 M in hexane, 0.133 mL, 0.2 mmol, Aldrich) under argon. After 30 min, water (0.1 mL) was added, and the mixture was allowed to be stirred for 30 min. Precipitates were removed by suction filtration, and the filtrate was concentrated. The residue was dissolved in CH_2Cl_2 (2 mL) and washed with water (3 mL). Dryness (Na₂-SO₄) and evaporation of the solvent gave an oil (16 mg, ca. 100%), which comprised **19a** and **20a** in a ratio of 76:24.

Reduction of Methiodide 17a with Sodium Bis(2methoxyethoxy)aluminum Hydride. To a stirred solution of methiodide **17a** (28 mg, 0.05 mmol) in dry THF (5 mL) was added sodium bis(2-methoxyethoxy)aluminum hydride (3.5 M in toluene, 0.057 mL, 0.2 mmol, Nippon Alkylaluminum Co.) in an atmosphere of argon. After 5 min, THF (1 mL) containing 0.2 mL of water was added, and the mixture was allowed to be stirred for 30 min. Precipitates were removed by suction filtration, and the filtrate was concentrated. The residue was dissolved in CH₂Cl₂ (2 mL), washed with water (3 mL), and dried (Na₂SO₄). Evaporation of the solvent gave an oil (23 mg, ca. 100%), which comprised **19a** and **20a** in a ratio of 40:60.

General Procedure for Synthesis of *Erythro*-Phthalideisoquinoline Alkaloides 1a-f and the N-Benzyl Derivatives 1g and 1h by Palladium(0)-Catalyzed Carbonvlation of *Erythro*-Amino Alcohols 19a-h. Synthesis of (±)-Cordrastine-II (1a). A stirred mixture of 17a (45 mg, 0.1 mmol), Pd(OAc)2 (4.5 mg, 0.02 mmol), PPh3 (10.5 mg, 0.04 mmol), K₂CO₃ (276 mg, 2 mmol), and Me₃SiCl (22 mg, 0.2 mmol) in toluene (2 mL) was refluxed in an atmosphere of carbon monoxide for 24 h in a manner similar to that described for carbonylation of benzyl alcohol 5a. Precipitates were removed by suction filtration through a Celite pad, and the filtrate was concentrated to give an oily residue (60 mg), ¹H NMR analysis of which revealed that this was essentially a mixture of **1a**, PPh₃, and its oxide. The starting material was not detected. This was dissolved in MeOH (5 mL) containing 5% KOH and refluxed for 5 min. MeOH was removed on a rotary eveporator, and then water (5 mL) was added to the residue, which was washed with CH_2Cl_2 (3 mL \times 2). The water layer, after addition of 2 N HCl (2 mL), was allowed to stand at room temperature for 3 h and was then basified with aqueous 2 N NaOH by adjusting to pH 9 and extracted with CH_2Cl_2 (3 mL × 3). The combined CH_2Cl_2 layers were washed with water (7 mL), dried (Na₂SO₄), and evaporated. The residue (43 mg) was crystallized from MeOH to give (\pm) - cordrastine II (**1a**), (39 mg, 98%), as colorless crystals; mp 117–119 °C from MeOH (lit.⁵⁵ mp 110–114 °C;³⁴ 112–115 °C;⁵⁶ 117–118 °C;³³ 117–119 °C;⁵⁷ 118–119 °C). ¹H NMR (270 MHz) δ 2.30–2.40 (m, 1H), 2.58 (s, 3H), 2.55–2.70 (m, 2H), 2.90–3.00 (m, 1H), 3.67, 3.87, 3.88, 4.03 (each s, each 3H), 4.02, (d, J= 3.3 Hz, 1H), 5.54 (d, J= 3.3 Hz, 1H), 6.19 (s, 1H), 6.54 (s, 1H), 6.56, 7.09 (AB type, J= 8.3 Hz, each 1H).^{12e,33,34,55,56,58,59}

(±)-Corlumine (1b): 80% yield from 19b; mp 178–181 °C (MeOH) (lit.³⁴ 173–176 °C;⁶⁰ 174 °C;⁶¹ 175–176 °C;^{5,62} 178–181 °C;⁶³ 193.5–195 °C; ¹H NMR (270 MHz) δ 2.28–2.40 (m, 1H), 2.55–2.70 (m, 2H), 2.92–3.03 (m, 1H), 2.59 (s, 1H), 3.69 (s, 6H), 4.11 (d, J = 3.3 Hz, 1H), 5.67 (d, J = 3.3 Hz, 1H), 6.15 (s, 2H), 6.38 (s, 1H), 6.60 (s, 1H), 6.28, 6.95 (AB type, J = 7.9 Hz, each 1H).^{10d,h,64}

(±)-β-Hydrastine (1c): 80% yield from 19c; mp 135–137 °C (MeOH) (lit.^{12a} mp 135 °C;⁶² 136–140 °C;^{10c} 135–137 °C;⁶⁵ 137–138 °C;^{57,66} 138–139 °C;⁶⁷ 138–140 °C;⁵ 150–151 °C;^{11b,c} 151–152 °C). ¹H NMR (270 MHz) δ 2.22–2.32 (m, 2H), 2.42–2.65 (m, 2H), 2.85–2.94 (m, 1H), 2.55, 3.89, 4.06 (each s, each 3H), 3.99, (d, J = 3.6 Hz, 1H), 5.48 (d, J = 3.6 Hz, 1H), 5.90 (s, 2H), 6.38 (s, 1H), 6.58 (s, 1H), 6.52, 7.08 (AB type, J = 8.2 Hz, each 1H).^{10c,56,64}

(±)-**Bicuculline (1d):** 85% yield from **19d**; mp 227–229 °C (MeOH–Et₂O) (lit.⁶⁸ mp 215 °C;⁶¹ 215–216 °C;⁶⁰ 216 °C;⁶² 217–220 °C;⁵ 227–229 °C). ¹H NMR (270 MHz) δ 2.22–2.30 (m, 1H), 2.52–2.62 (m, 2H), 2.84–2.91 (m, 1H), 2.55 (s, 3H), 4.04, 5.56 (each d, J = 4.0 Hz, each 1H), 5.93 (d, J = 1.0 Hz, 1H), 6.16 (d, J = 1.7 Hz, 2H), 6.20, 6.92 (AB type, J = 7.9 Hz, each 1H), 6.46 (s, 1H), 6.58 (s, 1H).^{12e,69}

(±)-**Isocordrastine II (1e):** 87% yield from **19e**; mp 167–169 °C (EtOH) (lit.⁷⁰ mp 157–159 °C,^{59,71} 166–167 °C,⁵ 167–169 °C,⁶² 169–170 °C,⁶⁷ 169–171 °C,⁷² 170–171 °C). ¹H NMR (270 MHz) δ 2.28–2.40 (m, 1H), 2.57–2.72 (m, 2H), 2.93–3.03 (m, 1H), 2.60 (s, 3H), 3.72, 3.79, 3.86, 3.91 (each s, each 3H), 4.12, 5.58 (each d, J= 4.0 Hz, each 1H), 6.23, 6.42, 6.62, 7.23 (each s, each 1H).^{59,70–72}

(±)-**Isobicuculline (1f):** 89% yield from **19f**; mp 166–169 °C (MeOH–Et₂O); IR 1752, 1613, 1502 cm⁻¹; ¹H NMR (270 MHz) δ 2.27–2.43 (m, 1H), 2.58–2.64 (m, 2H), 2.91–2.98 (m, 1H), 2.53 (s, 3H), 3.93 (d, J = 4.6 Hz, 1H), 5.43 (d, J = 4.6 Hz, 1H), 5.92 (s, 2H), 6.08 (d, J = 4.9 Hz, 2H), 6.33, 6.50, 6.60, 7.17 (each s, each 1H). MS *m*/*z* (rel int) 190 (100). Anal. Calcd. for C₂₀H₁₇NO₆; C, 65.39; H, 4.66; N, 3.81. Found: C, 65.49; H, 4.58; N, 3.80.

(55) Prager, R. H.; Trippett, J. M.; Ward, A. D. Aust. J. Chem. **1981**, 34, 1085–1093.

- (57) Haworth, R. D.; Pinder, A. R. J. Chem. Soc. 1950, 1776–1780.
 (58) Shono, T.; Usui, Y.; Hamaguchi, H. Tetrahedron Lett. 1980, 21, 1351–1354.
- (59) Kametani, T.; Honda, T.; Inoue, H.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1976, 1221–1225.
- (60) Nalliah, B.; MacLean, D. B.; Rodrigo, R. G. A.; Manske, R. H. Can. J. Chem. **1977**, 55, 922–924.
- (61) Nalliah, B.; MacLean, D. B.; Holland, H. L.; Rodrigo, R. *Can. J. Chem.* **1979**, *57*, 1545–1578.
- (62) Slemon, C. E.; Hellwig, L. C.; Ruder, J.-P.; Hoskins, E. W.; MacLean, D. B. *Can. J. Chem.* **1981**, *59*, 3055–3060.
- (63) Wheley, W. M.; Meadow, M. J. Chem. Soc. 1953, 1067–1070.
 (64) Seitanidi, K. L.; Yagudaev, M. R.; Israilov, I. A.; Yunusov, M. S. Khim. Prirodu. Soedin. 1978, 465–471; Chem. Abstr. 1979, 90,
- 6585z.
- (65) Hope, E. Pyman, F. L. Remfry, F. G. P.; Robinson, R. *J. Chem. Soc.* **1931**, 236–247.
- (66) Haworth, R. D.; Pinder, A. R.; Robinson, R. *Nature* **1950**, *165*, 529.
- (67) Shono, K.; Hamaguchi, H.; Sasaki, M.; Figita, S.; Nagami, K. J. Org. Chem. **1983**, 48, 1621–1628.
- (68) Groenewoud, P. W. G.; Robinson, R. J. Chem. Soc. 1936, 199–202.
- (69) Mehra, K.; Garg, H. S.; Bhakuni, D. S.; Khanna, N. M. Ind. J. Chem. **1976**, *14B*, 844–848.
- (70) Shamma, M.; Georgiev, V. St. *Tetrahedron Lett.* **1974**, *27*, 2339–2342; *Tetrahedron* **1976**, *32*, 211–215.
- (71) Kametani, T.; Ohsawa, T.; Hirata, S.; Premila, S. M.; Ihara, M.; Fukumoto, K. *Chem. Pharm. Bull.* **1977**, *25*, 321–326.
- (72) Marsden, R.; MacLean, D. B. Can. J. Chem. 1984, 62, 306-308.

N-Benzyl *erythro*-lactone 1g: 91% yield from 19g; mp 119–120 °C (MeOH–Et₂O); IR 1757, 1610, 1602, 1517, 1498 cm⁻¹; ¹H NMR (270 MHz) δ 2.24–2.45 (m, 1H), 2.65–2.83 (m, 2H), 2.90 (m, 1H), 3.81, 4.18 (AB type, J = 13.7 Hz, each 1H), 3.65, 3.87, 3.88, 4.04 (each s, each 3H), 4.16, 5.64 (each d, J = 3.7 Hz, each 1H), 6.19 (s, 1H), 6.62 (s, 1H), 6.57, 7.10 (AB type, J = 8.4 Hz, each 1H), 7.23–7.40 (m, 5H). Anal. Calcd for C₂₈H₂₉NO₆: C, 70.72; H, 6.15; N, 2.95. Found: C, 70.65; H, 6.16; N, 3.00.

N-Benzyl *erythro*-lactone 1h: 85% yield from 19h; mp 195–196 °C (MeOH–Et₂O) (lit.⁵ mp 194–196 °C). This compound was identified on direct comparison with an authentic sample prepared by us.⁵

Palladium(0)-Catalyzed Carbonylation of *Threo*-Amino Alcohol 20a. Synthesis of (±)-Cordrastine I (2a). In a manner similar to the above, the aforementioned *threo*-alcohol 20a (23 mg) was converted to (±)-cordrastine I (2a) (18 mg, 90%), mp 155–156 °C (MeOH) (lit.³⁴ mp 153–157 °C;³³ 154–155 °C;⁵⁷ 155–156 °C;^{55,56,58,69} 156–157 °C). ¹H NMR (400 MHz) δ 2.30–2.40 (m, 1H), 2.55–2.70 (m, 2H), 3.00–3.10 (m, 1H), 2.65 (s, 3H), 3.71, 3.81, 3.82, 3.90 (each s, each 3H), 4.03, (d, J = 3.3 Hz, 1H), 5.51 (d, J = 3.3 Hz, 1H), 6.36, 6.69 (each s, each 1H), 7.00, 7.31 (AB type, J = 8.3 Hz, each 1H).^{12e,33,55,56,58}

General Procedure for Synthesis of Threo-Phthalideisoquinoline Alkaloids 2a-d. Synthesis of (±)-Cordrastine I (2a). A stirred mixture (92 mg, 0.2 mmol) of erythro-(19a) and threo-alcohols (20a) in a ratio of 2:5 [prepared almost quantitatively by treatment of 17a (119 mg, 0.2 mmol) with LiAlH₄ (15.2 mg, 0.4 mmol) in dry THF (20 mL) for 5 min], Pd(OAc)₂ (9.0 mg, 0.04 mmol), PPh₃ (21.0 mg, 0.08 mmol), K₂-CO₃ (552 mg, 4 mmol), and Me₃SiCl (44 mg, 0.4 mmol) in toluene (3 mL) was refluxed in an atmosphere of carbon monoxide for 24 h. The reaction mixture was allowed to be cooled to room temperature and filtered through a Celite pad. Toluene was removed on a rotary evaporator, and the residue was treated with water (10 mL) and CH_2Cl_2 (5 mL \times 3). The organic layers were washed with water (10 mL), dried over anhydrous Na₂SO₄, and concentrated. An oily residue (148 mg, **19a:20a** = 29:71) was separated by preparative TLC (5%) MeOH–CH₂Cl₂). A band with $R_f 0.9$ gave (±)-cordrastine I (2a, 50 mg, 62.5%) and another band with R_f 0.5 gave (±)cordrastine II (1a, 18 mg, 22.5%).

(±)-Adlumine (2b): 60% yield; mp 195–198 °C (MeOH– CHCl₃) (lit.³⁴ mp 187–189 °C;⁶¹ 189–190 °C;⁶³ 190 °C;⁶⁰ 191 °C;⁶² 191.5–193.5 °C). ¹H NMR (270 MHz) δ 2.35–2.85 (m, 3H), 2.64 (s, 3H), 3.03–3.10 (m, 1H), 3.76 (s, 3H), 3.81 (s, 3H), 4.08, (d, J = 3.3 Hz, 1H), 5.68 (d, J = 3.3 Hz, 1H), 6.07 (s, 2H), 6.38 (s, 3H), 6.70 (s, 1H), 6.88, 7.17 (AB type, J = 7.9 Hz, each 1H).⁶⁴

(±)- α -**Hydrastine (2c):** 74% yield, mp 152–154 °C (MeOH) (lit.^{12a} mp 150 °C;⁶⁵ 150–151 °C;⁶² 150–154 °C;^{57,66} 151–152 °C). ¹H NMR (270 MHz) δ 2.40–2.80 (m, 3H), 2.55 (s, 3H), 3.00–3.10 (m, 1H), 3.84 (s, 3H), 3.98 (s, 3H), 4.00, (d, J = 3.3 Hz, 1H), 5.54 (d, J = 3.3 Hz, 1H), 5.78, 5.83 (each d, J = 1.3 Hz, each 1H), 6.37 (s, 1H), 6.65 (s, 1H), 7.04, 7.29 (AB type, J = 8.3 Hz, each 1H).⁶⁴

(±)-Adlumidine (Capnoidine) (2d): (Capnoidine is optical antipode of adlumidine): 63% yield; mp 201–203.5 °C (MeOH–CHCl₃) (lit.⁶¹ mp 198–199 °C;⁶² 200–203 °C;⁶⁰ 199 °C). ¹H NMR (270 MHz) δ 2.40–2.80 (m, 1H), 2.53 (s, 3H), 3.00–3.10 (m, 1H), 4.03, (d, J = 3.3 Hz, 1H), 5.62 (d, J = 3.3 Hz, 1H), 5.84 (s, 2H), 6.10 (s, 2H), 6.40 (s, 1H), 6.67 (s, 1H), 6.94, 7.14 (AB q, J = 7.9 Hz, each 1H).^{12e,73,74}

General Procedure for Hydrogenolysis of N-Benzyl Lactone 1g and 1h. Synthesis of (\pm)-Norcordrastine II (1j). A suspension of N-benzyl lactone 1g (10 mg, 0.02 mmol) and 10% Pd-C (10 mg) in AcOEt (2 mL) was stirred in an atmosphere of hydrogen at room temperature for 8 h. Filtration of the catalyst and evaporation of the solvent in vacuo gave an oily residue, which was dissolved in CH₂Cl₂ (3 mL),

⁽⁵⁶⁾ Smula, V.; Cundasawmy, N. E.; Holland, H. L.; MacLean, D. B. Can. J. Chem. **1973**, *51*, 3287–3293.

⁽⁷³⁾ Ibragimova, M. U.; Yunusov, M. S.; Yu, S. *Khim. Prirodu.* Soedin. **1970**, 438–440; *Chem. Abstr.* **1971**, *74*, 54046r.

⁽⁷⁴⁾ Margvelashvili, N. N.; Kirjanova, A. T.; Tolkachev, O. N. Khim. Prirodu. Soedin. 1972, 127–128; Chem. Abstr. 1972, 77, 58825d.

washed with water (5 mL), and dried (Na₂SO₄). The solvent was evaporated to give (±)-norcordrastine II (**1j**) as a colorless oil [9 mg, lit.³³ mp 180–182 °C;⁷⁰ 183–185 °C;³⁴ 202–204 °C (HCl salt)], which appeared as one spot on silica gel TLC (5% MeOH–CH₂Cl₂, R_f 0.4). IR (neat) 1757 cm⁻¹; ¹H NMR (90 MHz) δ 2.43–2.60, 2.71–2.91 (m, each 2H), 3.82, 3.85, 3.89, 4.08 (each s, each 3H), 4.69 (d, J = 3.6 Hz, 1H), 5.72 (d, J = 3.6 Hz, 1H), 6.62 (s, 1H), 6.68 (s, 1H), 6.15, 6.97 (d, J = 8.2 Hz, each 1H).^{33,34}

(±)-**Norbicuculline 1k:** 87% yield from **1h**; a colorless oil; IR (film) 3360, 1763, 1649, 1616, 1503, 1477 cm⁻¹; ¹H NMR (270 MHz) δ 2.40–2.58, 2.75–2.90 (each m, each 2H), 4.71 (d, J = 3.6 Hz, 1H), 5.92 (s, 2H), 5.95 (d, J = 7.9 Hz, 1H), 5.96, 5.98 (each s, each 1H), 5.75 (d, J = 3.6 Hz, 1H), 6.61 (s, 1H), 6.71 (s, 1H), 6.85 (d, J = 7.9 Hz, 1H); MS *m*/*z* (rel int) 353 (M⁺, 6.1), 335 (21.2), 320 (14.8), 176 (100); HRMS *m*/*z* 353.0914 (calcd for C₁₉H₁₅NO₆: 353.0899).

2,3,8,9-Tetramethoxy-5,6-dihydroindolo[2,1-a]isoquinoline (3a). General Procedure. A mixture of 19a (45 mg. 0.1 mmol) and K₂CO₃ (28 mg, 0.2 mmol) in DMF (2 mL) was refluxed under N₂ for 3 days. After evaporation of the solvent, the residue was extracted with CH_2Cl_2 (35 mL \times 2), washed with water (10 mL \times 3), and dried (Na₂SO₄). Evaporation of the solvent and crystallization of the oily residue (38 mg) from EtOH gave 3a (27 mg, 79%), mp 190-194 °C, which gradually colored to dark green at room temperature. Recrystallization from EtOH gave the analytical sample (17 mg), mp 193-195 °C. IR 1609, 1575, 1556, 1508 cm⁻¹; ¹H NMR (270 MHz) δ 3.09, 4.63 (each t, J = 6.6 Hz, each 2H), 3.92, 3.93, 3.95, 3.97 (each s, aech 3H), 6.67 (s, 1H), 6.75 (s, 1H), 6.81, 7.24 (AB type, J= 8.6 Hz, each 1H), 7.18 (s, 1H); ¹³C NMR (67.5 MHz) δ 29.3 (t), 42.1 (t), 56.0 (q), 56.0 (q), 57.0 (q), 61.5 (q), 95.5 (d), 107.1 (d), 108.3 (d), 111.1 (d), 115.4 (d), 121.6 (s), 125.0 (s), 126.0 (s), 130.1 (s), 135.6 (s), 136.3 (s), 148.0 (s), 148.2 (s), 148.6 (s); MS m/z (rel int) 339 (M⁺, 100), 324 (68.7), 170 (23.5); FD-MS 340 $[(M + H)^+, 24.1], 339 (M^+, 100)$. Anal. Calcd for C₂₀H₂₁NO₄; C, 70.78; H, 6.24; N,4.13. Found; C, 70.78; H, 6.28; N, 4.05.

2,3-Dimethoxy-8,9-(methylenedioxy)-5,6-dihydroindolo-[2,1-a]isoquinoline (3b): 80% yield; mp 198–200 °C (MeOH– Et₂O); IR 1596, 1552, 1503 cm⁻¹; ¹H NMR (270 MHz) δ 3.11, 4.39 (each t, J = 6.6 Hz, each 2H), 3.91 (s, 3H), 3.95 (s, 3H), 6.00 (s, 2H), 6.68 (s, 1H), 6.74 (s, 1H), 6.74, 7.06 (AB type, J = 8.6 Hz, each 1H), 7.18 (s, 1H); MS *m*/*z* (rel int) 323 (M⁺, 100), 308 (17.5). Anal. Calcd for C₁₉H₁₇NO₄; C, 70.35; H, 4.26; N, 4.56. Found; C, 70.32; H, 4.36; N, 4.57.

8,9-Dimethoxy-2,3-(methylenedioxy)-5,6-dihydroindolo-[2,1-*a***]isoquinoline (3c):** 82% yield; mp 177–180 °C (MeOH– Et₂O); IR 1623, 1576, 1502 cm⁻¹; ¹H NMR (270 MHz) δ 3.06, 4.58 (each t, J = 6.3 Hz, each 2H), 3.93 (s, 3H), 3.96 (s, 3H), 5.97 (s, 2H), 6.62 (s, 1H), 6.72 (s, 1H), 6.80, 7.20 (AB type, J = 8.6 Hz, each 1H), 7.19 (s, 1H); MS *m*/*z* (rel int) 323 (M⁺, 100), 308 (93.0), 265 (35.2), 162 (20.5). Anal. Calcd for C₁₉H₁₇NO₄; C, 70.35; H, 4.26; N, 4.56. Found; C, 70.27; H, 4.30; N, 4.49.

2,3,8,9-Bis(methylenedioxy)-5,6-dihydroindolo[2,1-a]-isoquinoline (3d): 83% yield; mp 205–206 °C (EtOH); IR 1598, 1562, 1544, 1502 cm⁻¹; ¹H NMR (270 MHz) δ 3.08, 4.37 (each t, J = 6.6 Hz, each 2H), 5.97 (s, 2H), 5.99 (s, 2H), 6.64 (s, 1H), 6.72 (s, 1H), 6.75, 7.06 (AB type, J = 8.3 Hz, each 1H), 7.16 (s, 1H); MS m/z (rel int) 308 [(M + H)⁺, 23.2], 307 (M⁺, 100), 248 (24.0), 153 (24.6). Irradiation of a signal at δ 6.64 caused a NOE enhancement (20 and 7%) of signals owing to 1-H and 11-H at δ 7.16 and 7.06, respectively. Anal. Calcd for C₁₈H₁₃NO₄; C, 70.35; H, 4.26; N, 4.56. Found; C, 70.23; H, 4.46; N, 4.79.

2,3,9,10-Tetramethoxy-5,6-dihydroindolo[2,1-a]isoquinoline (3e): 57% yield; mp 207–208 °C (MeOH–CH₂Cl₂) (lit.³⁶ mp 199 °C;^{39a} 201–203 °C;^{38d} 202–203 °C;^{38a} 202–204 °C;^{38g,h} 209–210 °C). IR 1623, 1609, 1547, 1503 cm⁻¹; ¹H NMR (270 MHz) δ 3.12 (t, J = 6.6 Hz, 2H), 3.91, 3.93 (each s, each 3H), 3.96 (s, 6H), 4.17 (t, J = 6.6 Hz, 2H), 6.64, 6.75, 6.80, 7.07, 7.17 (each s, each 1H).^{38a}

2,3,9,10-Bis(methylenedioxy)-5,6-dihydroindolo[2,1-*a***]isoquinoline (3f):** 33%; mp 219.5–222.5 °C (MeOH); IR 1540, 1498 cm⁻¹; ¹H NMR (270 MHz) δ 3.07, 4.09 (each t, *J* = 6.6 Hz, each 2H), 5.93 (s, 2H), 5.96 (s, 2H), 6.59, 6.71, 6.77, 6.98, 7.12 (each s, each 1H); MS m/z (rel int) 308 [(M + H)⁺, 24.9], 307 (M⁺, 100), 248 (17.9), 154 (23.6). Anal. Calcd for C₁₈H₁₃-NO₄; C, 70.35; H, 4.26; N, 4.56. Found; C, 70.47; H, 4.40; N, 4.37.

1-(2-Bromo-3,4-dimethoxybenzyl)-6,7-dimethoxy-3,4-hydroisoquinoline Methiodide (21a). To a stirred solution of **15a** (210 mg, 0.5 mmol) in CH₃CN (2 mL) was added CH₃I (0.2 mL, 3.2 mmol). After the mixture was gently refluxed for 10 min, the solvent was removed on a rotary evaporator. Crystallization of the residue from MeOH gave methiodide **21a** as yellow crystals (203 mg, 75%), mp 206–208 °C; [IR 1639, 1606, 1592, 1561, 1514 cm⁻¹; ¹H NMR (270 MHz) δ 3.42 (t, J = 7.7, 2H), 3.76 (s, 3H), 3.85, 3.86, 3.97, 3.99 (each s, each 3H), 4.34 (t, J = 7.7, 2H), 4.66 (s, 2H), 6.86, 7.05 (s, each 1H), 6.91, 7.10 (AB type, J = 8.8 Hz, each 1H). Anal. Calcd for C₂₁H₂₅NO₄BrI: C, 4.86; H, 4.48; N, 2.49; I + Br, 36.78. Found; C, 44.58; H, 4.47; N, 2.34; I + Br, 36.86.

1-(2-Bromo-3,4-dimethoxybenzyl)-6,7-dimethoxy-2methyl-1,2,3,4-tetrahydroisoquinoline (22f). To a stirred solution of methiodide 21a (54.2 mg, 0.1 mmol) in MeOH (2 mL) was added NaBH₄ (10 mg, 0.25 mmol). After the mixture was continuously stirred for 30 min, MeOH was removed on a rotary evaporator, and the residue was treated with water (10 mL) and CH₂Cl₂ (5 mL). The water layer was further extracted with CH₂Cl₂ (3 mL). The combined CH₂Cl₂ layers were washed with water (10 mL) and dried (Na₂SO₄). Evaporation of the solvent gave a crystalline solid (43 mg), which was treated with benzene-Et₂O to give **22f** (39 mg, 87%), mp 126 °C; IR 1605, 1572, 1511 cm⁻¹; ¹H NMR (270 MHz) δ 2.58 (s, 3H), 2.61-2.73 (m, 1H), 2.84-2.97 (m, 3H), 3.26-3.40 (m, 1H), 3.52 (s, 3H), 3.85 (s, 9H), 3.85 (s, 2H), 5.89 (s, 1H), 6.58 (s, 1H), 6.71, 6.74 (AB type, J = 8.3 Hz, each 1H); MS m/z (rel int) 437, 435 [each (M - H)⁺, 0.3], 231, 229 (each 2.5), 206 (100). Anal. Calcd for C₂₁H₂₆NO₄Br: C, 57.81; H, 6.01; N, 3.21; Br, 18.31. Found: C, 57.63; H, 5.95; N, 3.08; Br, 18.18.

Treatment of a Mixture of 19a and 20a with K₂CO₃ in Boiling DMF. A stirred suspension of an oily mixture (50 mg, >90% yield) of **20a** and **19a** (3:2) [obtained by treatment of methiodide **17a** (56 mg, 0.1 mmol) with LiAlH₄ (7.6 mg, 0.2 mmol) in the manner described above], K₂CO₃ (28 mg, 0.2 mmol), and DMF (2 mL) was refluxed in an atmosphere of nitrogen. After 36 h, a part of the reaction mixture (0.5 mL) was poured into brine (10 mL), extracted with CH₂Cl₂ (2 mL × 3), washed with brine (5 mL × 5), and dried (Na₂SO₄). The extract was concentrated to give an oil (13 mg), which was found to be a mixture of **20a**, **19a**, and **3a** in a ratio of 3:1:1 in its ¹H NMR (270 MHz) analysis. The other part of the reaction mixture was refluxed for an additional 24 h, and a similar workup to the above gave an oil, which comprised **20a**, **19a**, and **3a** in a ratio of 2:0:4.

General Procedure for Reduction of Dihydroisoquinoline 15a-e with NaBH₄. 1-(2-Bromo-3,4-dimethoxybenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (22a). To a stirred solution of freshly prepared 1-benzyldihydroisoquinoline 15a (84 mg, 0.2 mmol) in MeOH (2 mL) was added NaBH₄ (3.8 mg, 0.1 mmol). After the mixture was stirred for 15 min, the solvents were evaporated at room temperature. The oily residue was dissolved in water (3 mL) and extracted with CH_2Cl_2 (3 mL \times 3). The organic layers were washed with water (5 mL), dried (Na₂SO₄), and concentrated to give 22a (84 mg, ca. 100%) as a colorless oil, IR (neat) 3380, 1601, 1492 cm⁻¹; ¹H NMR (270 MHz) δ 2.76 (t, J = 5.9, 2H), 2.93 (dd, J = 13.6, 10.3 Hz, 1H), 2.98 (dd, J = 11.6, 5.9 Hz, 1H), 3.24 (dd, J= 12.15, 5.9 Hz, 1H), 3.34 (dd, J = 13.6, 3.7 Hz, 1H), 3.84, 3.87, 3.876, 3.881 (each s, each 3H), 4.23 (dd, J = 10.3, 3.7 Hz, 1H), 6.60 (s, 1H), 6.76 (s, 1H), 6.85, 6.99 (AB type, J = 8.4Hz, each 1H); MS *m*/*z* (rel int) 422, 420 [each (M – H)⁺, 0.2], 192 (100); HRMS m/z 421.0896 (calcd for C20H24NO4Br: 421.0889).

1-[2-Bromo-3,4-(methylenedioxy)benzyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (22b): 94% yield; mp 187– 187.5 °C (MeOH); IR (neat) 3312, 1612, 1518, 1502 cm⁻¹; ¹H NMR (270 MHz) δ 2.75 (t, J = 5.6, 2H), 2.91 (dd, J = 10.2, 13.9 Hz, 1H), 2.97 (dd, J = 5.6, 12.8 Hz, 1H), 3.23 (1H, dd, J= 5.6, 12.8 Hz, 1H), 3.30 (dd, J = 13.9, 3.6 Hz, 1H), 3.86 (s, 3H), 3.87 (s, 3H), 4.19 (dd, J = 10.2, 3.6 Hz, 1H), 6.05 (s, 2H), 6.60 (s, 1H), 6.75 (s, 1H), 6.73, 6.77 (AB type, J = 7.3 Hz, each 1H); MS *m*/*z* (rel int) 406, 404 [each (M – H)⁺, 0.2], 192 (100). Anal. Calcd for C₁₉H₂₀NO₄Br: C, 56.17; H, 4.96; N, 3.45; Br, 19.67. Found; C, 56.12; H, 5.01; N, 3.32; Br, 19.54.

1-(2-Bromo-3,4-dimethoxybenzyl)-6,7-(methylenedioxy)-1,2,3,4-tetrahydroisoquinoline (22c): 86% yield; a colorless oil; IR (neat) 3
316, 1595, 1504 cm $^{-1};$ $^1{\rm H}$ NMR (270 MHz)
 $\delta 2.66$ (t, J = 5.6, 2H), 2.81 (dd, J = 10.6, 13.9 Hz, 1H), 2.87 (dd, J = 5.6, 12.2 Hz, 1H), 3.13 (dd, J = 5.6, 12.2 Hz, 1H), 3.24 (dd, J = 13.9, 3.3 Hz, 1H), 3.81 (s, 6H), 4.12 (dd, J = 10.6, 3.3 Hz, 1H), 5.83 (s, 2H), 6.50 (s, 1H), 6.78 (s, 1H), 6.78, 6.92 (AB type, J = 8.6 Hz, each 1H); MS m/z (rel int) 406 [(M - H)⁺, 0.5], 404 (0.4), 324 (6.1), 176 (100); HRMS m/z 404.0484 (calcd for $C_{19}H_{20}NO_4Br: 404.0497)$

1-[2-Bromo-3,4-(methylenedioxy)benzyl]-6,7-(methylenedioxy)-1,2,3,4-tetrahydroisoquinoline (22d): 97% yield; mp 173-175 °C (MeOH); IR 3318, 1617, cm⁻¹; ¹H NMR (270 MHz) $\delta 2.67 - 3.19$ (m, 5H), 4.74 (dd, J = 12.9, 3.3 Hz, 1H), 5.03 (d, J = 11.2 Hz, 3.0 Hz, 1H), 5.90 (s, 2H), 5.94 (s, 2H), 6.57 (s, 1H), 6.69 (s, 1H), 6.69 (d, J = 7.9, 1.6 Hz, 1H), 6.74 (d, J = 1.6 Hz, 1H), 6.77 (d, J = 7.9 Hz, 1H); MS m/z (rel int) 390, 388 [each (M - H)⁺, 0.2], 308 (0.9), 213 (1.5), 176 (100). Anal. Calcd for C₁₈H₁₆NO₄Br: C, 55.40; H, 4.13; N, 3.59; Br, 20.48. Found; C, 55. 34; H, 4.02; N, 3.61; Br, 20.34.

General Procedure for Palladium(0)-Catalyzed Carbonylation of 1-(2-Bromobenzyl)-1,2,3,4-tetrahydroisoquinolines 22a-d. (\pm)-8-Oxotetrahydropalmatine (23a). A stirred mixture of freshly prepared tetrahydroisoquinoline 22a (41 mg, 0.1 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), PPh₃ (10.5 mg, 0.04 mmol), and K₂CO₃ (14 mg, 0.1 mmol) in toluene (2 mL) was refluxed in an atmosphere of carbon monoxide for 26 h. The reaction mixture was allowed to cool to room temperature and filtered through a Celite pad. Toluene was removed on a rotary evaporator, and the residue was treated with water (5 mL) and CH_2Cl_2 (2 mL \times 3). The organic layers were washed with water (5 mL), dried (Na₂SO₄), and concentrated. The oily residue (61 mg) was purified by preparative TLC (5% MeOH–CH₂Cl₂). A fraction with R_f 0.5 gave an oil (32 mg), which was crystallized from MeOH-Et₂O to give (\pm) -8-oxotetrahydropalmatine **23a**, as colorless crystals (28 mg, 75%), mp 171–172 °C (lit.^{48h} mp 167–168 °C;^{67,75} 170–171 °C); IR (neat) 1648, 1592, 1516, 1486 cm⁻¹; ¹H NMR (270 MHz) δ 2.70-3.15 (m, 1H), 3.87 (s, 9H), 3.89 (s, 3H), 4.73 (dd, J = 13.0, 3.3 Hz, 1H), 5.04 (dd, J = 8.6, 2.3 Hz, 1H), 6.68 (s, 1H), 6.69 (s, 1H), 6.95, 7.01 (AB type, J = 8.3 Hz, each 1H).⁷⁵

(±)-8-Oxosinactine (23b): 18 h; 77% yield; mp 198-202 °C (MeOH) (lit.⁷⁶ mp 198-200 °C); IR (Nujol) 3004, 1646, 1600, 1514 cm⁻¹; ¹H NMR (270 MHz) δ 2.72–3.17 (m, 5H), 3.89 (s, 3H), 3.90 (s, 3H), 4.80 (dd, J = 12.9, 3.3 Hz, 1H), 4.98 (dd, J = 8.6, 3.0 Hz, 1H), 6.12, 6.17 (each d, J = 1.3 Hz, each 1H), 6.68 (s, 2H), 6.70, 6.87 (AB type, J = 7.9, each 1H); MS m/z(rel int) 353 (M⁺, 100), 338 (31.7), 322 (11.0), 190 (22.4), 162 (85.2), 134 (71.5).

(±)-8-Oxocanadine (23c): 26 h, 85% yield; mp 209-211 °C (EtOH) (lit.^{48h} mp 199–200 °C;^{48h,i} 217–218 °C;⁶⁶ 222–223 °C); IR (Nujol) 1651, 1577, 1504, 1486 cm⁻¹; ¹H NMR (270 MHz) & 2.70-3.06 (m, 5H), 3.84 (s, 3H), 4.01 (s, 3H), 4.70 (dd, J = 12.9, 3.3 Hz, 1H), 4.98 (dd, J = 8.6, 3.0 Hz, 1H), 6.66, 6.67 (s, each 1H), 6.93, 7.00 (AB type, J = 8.3, each H);^{48h,i} MS m/z (rel int) 353 (M⁺, 36.8), 178 (100), 176 (56.6), 135 (64.0), 120 (57.9), 90 (63.8).

(±)-8-Oxostylopine (23d): 18 h; 82% yield; mp 267-270 °C (MeOH); IR 1647, 1597, 1486 cm⁻¹; ¹H NMR (270 MHz) δ 2.69-3.14 (m, 5H), 4.75 (dd, J = 13.2, 3.3 Hz, 1H), 4.93 (dd, J = 9.2, 3.3 Hz, 1H), 5.95 (s, 2H), 6.07, 6.17 (each d, J = 1.3 Hz, each 1H), 6.66 (s, 1H), 6.69 (s, 1H), 6.68, 6.86 (AB type, J =7.6 Hz, each 1H); MS *m*/*z* (rel int) 337 (M⁺, 51.9), 174 (23.8), 162 (77.2), 134 (100). Anal. Calcd for C₁₉H₁₅NO₅: C, 67.65: H, 4.48; N, 4.15. Found: C, 67.65: H, 4.48; N, 4.15.

General Procedure for LiAlH₄ Reduction of 8-Oxoberbines 23a-d. (±)-Tetrahydropalmatine (4a). To a stirred solution of 23a (35 mg, 0.1 mmol) in dry THF (10 mL) was added LiAlH₄ (19 mg, 0.5 mmol). This suspension was refluxed for 45 min under N_2 , cooled to room temperature, and then treated with THF (2.5 mL) containing water (0.5 mL). The resultant precipitates were removed by suction filtration, and the filtrate was concentrated. The residue was shaken with water (5 mL) and CH₂Cl₂ (5 mL). The organic layer was dried (Na₂SO₄) and concentrated to give an oil (36 mg), which was crystallized from MeOH-Et₂O to give **4a** (31 mg, 87%), mp 150–151 °C (lit.⁷⁸ mp 145–146 °C;^{79–81} 147 °C;⁸² 148 °C;⁸³ 148–150 °C;⁸⁴ 149.5–150.5 °C;^{48h} 150–151 °C;⁸⁵ 151–151.5 °C). The ¹H NMR spectrum of this sample was identical with the reported data.78,81,82,85

(±)-**Sinactine (4b):** 90% yield; mp 168–170 °C (MeOH) (lit.⁸⁶ mp 155–156 °C;⁴⁶ 163–165 °C;⁸¹ 166 °C;^{80,87} 167–168 °C;^{84,88} 169–170 °C; lit.^{56d} 257–258 °C (HCl salt). The ¹H NMR spectrum of this sample was identical with the reported data. 54j, 59c, 60c

(±)-Canadine (4c): 82% yield; mp 172–174 °C (EtOH) (lit.⁵⁰ mp 163–165 °C,⁵¹ 164–165 °C,⁸⁹ 165 °C,⁸⁷ mp 164–166 °C,⁴⁶ 167–168 °C,⁷⁶ 168–170 °C,^{48h,i} 172–173 °C. The ¹H NMR spectrum of this sample was identical with the reported data.46,481,89

(±)-Stylopine (4d): 86% yield: mp 211-214 °C (MeOH) (lit.⁸⁷ mp 191-192 °C;⁴⁶ 194-195 °C;⁴⁸p 213-215 °C;⁸⁰ 217-218 °C;⁸⁸ 219 °C). The ¹H NMR spectrum of this sample was identical with the reported data.46

Acknowledgment. We thank the Akiyama Foundation for generous financial support.

Supporting Information Available: ¹H NMR spectra for compounds 1a-h, j, k, 2a-d, 3a-f, 4a-d, and 23a-d. This material is available free of charge via the Internet at http://pubs.acs.org.

JO982451W

- (77) Perkin, W. H.; Ray, J. N.; Stauton, J.; Hirst, M. J. Chem. Soc. 1925, 127, 740-744.
- (78) Dean, R. T.; Rapoport, H. J. Org. Chem. 1978, 43, 2115-2122. (79) Haworth, R. D.; Koepfli, J. B.; Perkin Jr., W. H. J. Chem. Soc. 1927. 548-554.
- (80) Bradsher, C. K.; Dutta, N. L. J. Org. Chem. 1961, 26, 2231-2234

(81) Kiparissides, Z.; Fichtner, R. H.; Poplawski, J.; Nalliah, B. C.; (82) Tani, C.; Imanishi, I.; Nishijo, J. Yakugaku Zasshi 1970, 90,

407-411; Chem. Abstr. 1970, 73, 25719m.

- (83) Narasimuhan, N. S.; Ranade, A. C.; Bhide, B. S. Indian J. Chem. 1981, 20B, 439–440. (84) Ninomiya, I., Naito, T.; Takasugi, H. J. Chem. Soc., Perkin
- Trans 1 1975, 1720-1724.

- (85) Kametani, T.; Ihara, M. J. Chem. Soc. (C) 1967, 530–532.
 (86) Lentz, G. R. J. Org. Chem. 1974, 39, 2846–2851.
 (87) Rajaraman, R.; Pai, B. R.; Premila, M. S.; Suguna, H. Indian J. Chem. 1977, 15B, 876-879.
- (88) Haworth, R. D.; Perkin, W. H., Jr. J. Chem. Soc. 1926, 1769-1784
- (89) Kametani, T.; Noguchi, I.; Saito, K.; Kaneda, S. J. Chem. Soc. (C) 1969, 2036-2038.

⁽⁷⁵⁾ Shono, T.; Usui, Y.; Mizutani, T.; Hamaguchi, H. Tetrahedron Lett. 1980, 21, 3073–3076. (76) Govindachari, T. R.; Nagarajan, K.; Charubala, R.; Pai, B. R.

Ind. J. Chem. 1970, 8, 763-765.